Academia.eduAcademia.edu

Outline

Universal scaling of active nematic turbulence

2020, Nature Physics

https://doi.org/10.1038/S41567-020-0854-4

Abstract
sparkles

AI

Active nematic fluids exhibit turbulent-like behavior at low Reynolds numbers, yet their universal scaling properties remain uncertain. A minimal defect-free model is proposed to investigate these fluids, revealing a universal scaling of the kinetic energy spectrum of E(q) ∼ q^{d-3} (d > 1) at long wavelengths. Energy injection peaks at a characteristic length scale, and while energy cascades are precluded due to immediate dissipation, long-range velocity correlations arise from non-local Stokes flow, establishing a distinct universality class of turbulence.

Key takeaways
sparkles

AI

  1. Active nematic fluids exhibit turbulent flows with universal scaling properties at large length scales.
  2. Energy injection occurs at all scales, peaking at a characteristic wavelength determined by nonlinear dynamics.
  3. The scaling regime is established by long-range hydrodynamic interactions, not by energy cascades.
  4. Kinetic energy and enstrophy spectra scale as E(q) ∼ q^(-3) and E(q) ∼ q^(-1), respectively.
  5. The study introduces a minimal model for active nematic turbulence, revealing unique properties compared to inertial turbulence.

References (58)

  1. A. N. Kolmogorov, "The Local Structure of Turbulence in In- compressible Viscous Fluid for Very Large Reynolds Num- bers," Proc. R. Soc. A Math. Phys. Eng. Sci. 434, 9-13 (1991).
  2. Uriel Frisch, Turbulence. The legacy of A.N. Kolmogorov (Cam- bridge University Press, 1995).
  3. A. Groisman and V. Steinberg, "Elastic turbulence in a polymer solution flow," Nature 405, 53-55 (2000).
  4. Christopher Dombrowski, Luis Cisneros, Sunita Chatkaew, Raymond E. Goldstein, and John O. Kessler, "Self- Concentration and Large-Scale Coherence in Bacterial Dynam- ics," Phys. Rev. Lett. 93, 098103 (2004).
  5. Luis H. Cisneros, Ricardo Cortez, Christopher Dombrowski, Raymond E. Goldstein, and John O. Kessler, "Fluid dynamics of self-propelled microorganisms, from individuals to concen- trated populations," Exp. Fluids 43, 737-753 (2007).
  6. T. Ishikawa, N. Yoshida, H. Ueno, M. Wiedeman, Y. Imai, and T. Yamaguchi, "Energy Transport in a Concentrated Suspension of Bacteria," Phys. Rev. Lett. 107, 028102 (2011).
  7. Henricus H Wensink, Jörn Dunkel, Sebastian Heidenreich, Knut Drescher, Raymond E Goldstein, Hartmut Löwen, and Julia M Yeomans, "Meso-scale turbulence in living fluids," Proc. Natl. Acad. Sci. U. S. A. 109, 14308-13 (2012).
  8. Jörn Dunkel, Sebastian Heidenreich, Knut Drescher, Henri- cus H. Wensink, Markus Bär, and Raymond E. Goldstein, "Fluid Dynamics of Bacterial Turbulence," Phys. Rev. Lett. 110, 228102 (2013).
  9. Adama Creppy, Olivier Praud, Xavier Druart, Philippa L. Kohnke, and Franck Plouraboué, "Turbulence of swarming sperm," Phys. Rev. E 92, 032722 (2015).
  10. Tim Sanchez, Daniel T N Chen, Stephen J DeCamp, Michael Heymann, and Zvonimir Dogic, "Spontaneous motion in hier- archically assembled active matter," Nature 491, 431-4 (2012).
  11. G. Henkin, S. J. DeCamp, D. T. N. Chen, T. Sanchez, and Z. Dogic, "Tunable dynamics of microtubule-based active isotropic gels," Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 372, 20140142 (2014).
  12. Pau Guillamat, Jordi Ignés-Mullol, and Francesc Sagués, "Taming active turbulence with patterned soft interfaces," Nat. Commun. 8, 564 (2017).
  13. Linnea M. Lemma, Stephen J. DeCamp, Zhihong You, Luca Giomi, and Zvonimir Dogic, "Statistical properties of au- tonomous flows in 2D active nematics," Soft Matter 15, 3264- 3272 (2019).
  14. Amin Doostmohammadi, Sumesh P Thampi, Thuan B Saw, Chwee T Lim, Benoit Ladoux, and Julia M Yeomans, "Cell division: a source of active stress in cellular monolayers," Soft Matter 11, 7328-7336 (2015).
  15. Taeseok Daniel Yang, Hyun Kim, Changhyeong Yoon, Seung- Kuk Baek, and Kyoung J Lee, "Collective pulsatile expan- sion and swirls in proliferating tumor tissue," New J. Phys. 18, 103032 (2016).
  16. C. Blanch-Mercader, V. Yashunsky, S. Garcia, G. Duclos, L. Giomi, and P. Silberzan, "Turbulent Dynamics of Epithe- lial Cell Cultures," Phys. Rev. Lett. 120, 208101 (2018).
  17. Daiki Nishiguchi and Masaki Sano, "Mesoscopic turbulence and local order in Janus particles self-propelling under an ac electric field," Phys. Rev. E 92, 052309 (2015).
  18. Jörn Dunkel, Sebastian Heidenreich, Markus Bär, and Ray- mond E Goldstein, "Minimal continuum theories of structure formation in dense active fluids," New J. Phys. 15, 045016 (2013).
  19. J. Słomka and J. Dunkel, "Generalized Navier-Stokes equations for active suspensions," Eur. Phys. J. Spec. Top. 224, 1349- 1358 (2015).
  20. Robert Großmann, Pawel Romanczuk, Markus Bär, and Lutz Schimansky-Geier, "Vortex Arrays and Mesoscale Turbulence of Self-Propelled Particles," Phys. Rev. Lett. 113, 258104 (2014).
  21. Sebastian Heidenreich, Jörn Dunkel, Sabine H. L. Klapp, and Markus Bär, "Hydrodynamic length-scale selection in mi- croswimmer suspensions," Phys. Rev. E 94, 020601 (2016).
  22. Vasil Bratanov, Frank Jenko, and Erwin Frey, "New class of turbulence in active fluids," Proc. Natl. Acad. Sci. 112, 15048- 15053 (2015).
  23. Martin James, Wouter J. T. Bos, and Michael Wilczek, "Tur- bulence and turbulent pattern formation in a minimal model for active fluids," Phys. Rev. Fluids 3, 061101 (2018).
  24. Jonasz Słomka and Jörn Dunkel, "Spontaneous mirror- symmetry breaking induces inverse energy cascade in 3D active fluids," Proc. Natl. Acad. Sci. U. S. A. 114, 2119-2124 (2017).
  25. Jonasz Słomka, Piotr Suwara, and Jörn Dunkel, "The nature of triad interactions in active turbulence," J. Fluid Mech. 841, 702-731 (2018).
  26. Charles W Wolgemuth, "Collective Swimming and the Dynam- ics of Bacterial Turbulence," Biophys. J. 95, 1564-1574 (2008).
  27. Luca Giomi, M. Cristina Marchetti, and Tanniemola B. Liver- pool, "Complex Spontaneous Flows and Concentration Band- ing in Active Polar Films," Phys. Rev. Lett. 101, 198101 (2008).
  28. Luca Giomi and M. Cristina Marchetti, "Polar patterns in active fluids," Soft Matter 8, 129 (2012).
  29. Francesco Bonelli, Giuseppe Gonnella, Adriano Tiribocchi, and Davide Marenduzzo, "Spontaneous flow in polar active flu- ids: the effect of a phenomenological self propulsion-like term," Eur. Phys. J. E. Soft Matter 39, 1 (2016).
  30. Rajesh Ramaswamy and Frank Jülicher, "Activity induces trav- eling waves, vortices and spatiotemporal chaos in a model ac- tomyosin layer," Sci. Rep. 6, 20838 (2016).
  31. C. Blanch-Mercader and J. Casademunt, "Hydrodynamic insta- bilities, waves and turbulence in spreading epithelia," Soft Mat- ter 13, 6913-6928 (2017).
  32. S.P. Thampi and J.M. Yeomans, "Active turbulence in active nematics," Eur. Phys. J. Spec. Top. 225, 651-662 (2016).
  33. Amin Doostmohammadi, Jordi Ignés-Mullol, Julia M. Yeo- mans, and Francesc Sagués, "Active nematics," Nat. Commun. 9, 3246 (2018).
  34. S. M. Fielding, D. Marenduzzo, and M. E. Cates, "Nonlinear dynamics and rheology of active fluids: Simulations in two di- mensions," Phys. Rev. E 83, 041910 (2011).
  35. L. Giomi, L. Mahadevan, B. Chakraborty, and M. F. Hagan, "Excitable Patterns in Active Nematics," Phys. Rev. Lett. 106, 218101 (2011).
  36. Sumesh P. Thampi, Ramin Golestanian, and Julia M. Yeomans, "Velocity Correlations in an Active Nematic," Phys. Rev. Lett. 111, 118101 (2013).
  37. Sumesh P. Thampi, Ramin Golestanian, and Julia M. Yeomans, "Instabilities and topological defects in active nematics," EPL (Europhysics Lett. 105, 18001 (2014).
  38. Sumesh P Thampi, Ramin Golestanian, and Julia M Yeomans, "Vorticity, defects and correlations in active turbulence," Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 372, 20130366 (2014).
  39. Sumesh P. Thampi, Ramin Golestanian, and Julia M. Yeomans, "Active nematic materials with substrate friction," Phys. Rev. E 90, 062307 (2014).
  40. Luca Giomi, "Geometry and Topology of Turbulence in Active Nematics," Phys. Rev. X 5, 031003 (2015).
  41. Sumesh P. Thampi, Amin Doostmohammadi, Ramin Golesta- nian, and Julia M. Yeomans, "Intrinsic free energy in active nematics," EPL (Europhysics Lett. 112, 28004 (2015).
  42. Ewan J. Hemingway, Prashant Mishra, M. Cristina Marchetti, and Suzanne M. Fielding, "Correlation lengths in hydrody- namic models of active nematics," Soft Matter 12, 7943-7952 (2016).
  43. Amin Doostmohammadi, Tyler N. Shendruk, Kristian Thijssen, and Julia M. Yeomans, "Onset of meso-scale turbulence in ac- tive nematics," Nat. Commun. 8, 15326 (2017).
  44. J. Urzay, A. Doostmohammadi, and J. M. Yeomans, "Multi- scale statistics of turbulence motorized by active matter," J. Fluid Mech. 822, 762-773 (2017).
  45. M. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B. Liverpool, J. Prost, Madan Rao, and R. Aditi Simha, "Hydrodynamics of soft active matter," Rev. Mod. Phys. 85, 1143-1189 (2013).
  46. J. Prost, F. Jülicher, and J-F. Joanny, "Active gel physics," Nat. Phys. 11, 111-117 (2015).
  47. Frank Jülicher, Stephan W Grill, and Guillaume Salbreux, "Hy- drodynamic theory of active matter," Reports Prog. Phys. 81, 076601 (2018).
  48. Pierre-Gilles de Gennes and Jacques Prost, The Physics of Liq- uid Crystals, 2nd ed. (Oxford University Press, 1993).
  49. R. Aditi Simha and Sriram Ramaswamy, "Hydrodynamic Fluc- tuations and Instabilities in Ordered Suspensions of Self- Propelled Particles," Phys. Rev. Lett. 89, 058101 (2002).
  50. R Voituriez, J F Joanny, and J Prost, "Spontaneous flow transi- tion in active polar gels," Europhys. Lett. 70, 404-410 (2005).
  51. Luca Giomi, Mark J Bowick, Prashant Mishra, Rastko Sknep- nek, and M. Cristina Marchetti, "Defect dynamics in active ne- matics," Philos. Trans. A. Math. Phys. Eng. Sci. 372, 20130365 (2014).
  52. Berta Martínez-Prat, Jordi Ignés-Mullol, Jaume Casademunt, and Francesc Sagués, "Selection mechanism at the onset of ac- tive turbulence," Nat. Phys. 15, 362 (2019).
  53. Tyler N. Shendruk, Amin Doostmohammadi, Kristian Thijssen, and Julia M. Yeomans, "Dancing disclinations in confined ac- tive nematics," Soft Matter 13, 3853-3862 (2017).
  54. Jonasz Słomka and Jörn Dunkel, "Geometry-dependent vis- cosity reduction in sheared active fluids," Phys. Rev. Fluids 2, 043102 (2017).
  55. William H Press, Saul A Teukolsky, William T Vetterling, and Brian P Flannery, Numerical recipes in Fortran 77. The art of scientific computing, 2nd ed. (Cambridge University Press, 1992).
  56. Markus Seeβelberg and Francesco Petruccione, "Numerical in- tegration of stochastic partial differential equations," Comput. Phys. Commun. 74, 303-315 (1993).
  57. Masud Chaichian, Ioan Merches, and Anca Tureanu, Mechan- ics. An intensive course (Springer, 2012).
  58. K Kruse, J F Joanny, F. Jülicher, J Prost, and K Sekimoto, "Generic theory of active polar gels: a paradigm for cytoskele- tal dynamics," Eur. Phys. J. E 16, 5-16 (2005).