Academia.eduAcademia.edu

Outline

Machine learning active-nematic hydrodynamics

Proceedings of the National Academy of Sciences

https://doi.org/10.1073/PNAS.2016708118

Abstract

Hydrodynamic theories effectively describe many-body systems out of equilibrium in terms of a few macroscopic parameters. However, such parameters are difficult to determine from microscopic information. Seldom is this challenge more apparent than in active matter, where the hydrodynamic parameters are in fact fields that encode the distribution of energy-injecting microscopic components. Here, we use active nematics to demonstrate that neural networks can map out the spatiotemporal variation of multiple hydrodynamic parameters and forecast the chaotic dynamics of these systems. We analyze biofilament/molecular-motor experiments with microtubule/kinesin and actin/myosin complexes as computer vision problems. Our algorithms can determine how activity and elastic moduli change as a function of space and time, as well as adenosine triphosphate (ATP) or motor concentration. The only input needed is the orientation of the biofilaments and not the coupled velocity field which is harder to...

References (73)

  1. P. Mehta et al., A high-bias, low-variance introduction to machine learning for physicists. Phys. Rep. 810, 1-124 (2019).
  2. G. Carleo et al., Machine learning and the physical sciences. Rev. Mod. Phys. 91, 45002 (2019).
  3. Y. Lecun, Y. Bengio, G. Hinton, Deep learning. Nature 521, 436-444 (2015).
  4. J. Schmidhuber, Deep learning in neural networks: An overview. Neural Network. 61, 85-117 (2015).
  5. S. Schoenholz, E. Cubuk, D. Sussman, E. Kaxiras, A. Liu, A structural approach to relaxation in glassy liquids. Nat. Phys. 12, 469-471 (2016).
  6. V. Bapst et al., Unveiling the predictive power of static structure in glassy systems. Nat. Phys. 16, 448-454 (2020).
  7. J. Carrasquilla, R. G. Melko, Machine learning phases of matter. Nat. Phys. 13, 431-434 (2017).
  8. E. P. Van Nieuwenburg, Y. H. Liu, S. D. Huber, Learning phase transitions by confusion. Nat. Phys. 13, 435-439 (2017).
  9. P. Mehta, D. J. Schwab, An exact mapping between the variational renormalization group and deep learning. arXiv:1410.3831 (14 October 2014).
  10. M. Koch-Janusz, Z. Ringel, Mutual information, neural networks and the renormal- ization group. Nat. Phys. 14, 578-582 (2018).
  11. E. D. Cubuk et al., Structure-property relationships from universal signatures of plasticity in disordered solids. Science 358, 1033-1037 (2017).
  12. A. Radovic et al., Machine learning at the energy and intensity frontiers of particle physics. Nature 560, 41-48 (2018).
  13. M. C. Marchetti et al., Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143- 1189 (2013).
  14. A. Doostmohammadi, J. Ign és-Mullol, J. M. Yeomans, F. Sagu és, Active nematics. Nat. Commun. 9, 3246 (2018).
  15. T. Sanchez, D. T. Chen, S. J. DeCamp, M. Heymann, Z. Dogic, Spontaneous motion in hierarchically assembled active matter. Nature 491, 431-434 (2012).
  16. F. C. Keber et al., Topology and dynamics of active nematic vesicles. Science 345, 1135- 1139 (2014).
  17. P. W. Ellis et al., Curvature-induced defect unbinding and dynamics in active nematic toroids. Nat. Phys. 14, 85-90 (2018).
  18. N. Kumar, R. Zhang, J. J. De Pablo, M. L. Gardel, Tunable structure and dynamics of active liquid crystals. Sci. Adv. 4, eaat7779 (2018).
  19. G. Duclos et al., Topological structure and dynamics of three-dimensional active nematics. Science 367, 1120-1124 (2020).
  20. A. J. Tan et al., Topological chaos in active nematics. Nat. Phys. 15, 1033-1039 (2019).
  21. J. Hardo üin et al., Reconfigurable flows and defect landscape of confined active nematics. Commun. Phys. 2, 121 (2019).
  22. T. B. Saw et al., Topological defects in epithelia govern cell death and extrusion. Nature 544, 212-216 (2017).
  23. G. Duclos, C. Erlenk ämper, J. F. Joanny, P. Silberzan, Topological defects in confined populations of spindle-shaped cells. Nat. Phys. 13, 58-62 (2017).
  24. Y. Maroudas-Sacks et al., Topological defects in the nematic order of actin fibers as organization centres of Hydra morphogenesis. Nat. Phys. 17, 251-259 (2021).
  25. R. Mueller, J. M. Yeomans, A. Doostmohammadi, Emergence of active nematic behavior in monolayers of isotropic cells. Phys. Rev. Lett. 122, 048004 (2019).
  26. K. T. Wu et al., Transition from turbulent to coherent flows in confined three- dimensional active fluids. Science 355, eaal1979 (2017).
  27. R. Zhang et al., Structuring stress for active materials control. arXiv [Preprint] (2019). https://arxiv.org/abs/1912.01630 (Accessed 19 February 2021).
  28. L. Giomi, Ž. Kos, M. Ravnik, A. Sengupta, Cross-talk between topological defects in different fields revealed by nematic microfluidics. Proc. Natl. Acad. Sci. U.S.A. 114, E5771-E5777 (2017).
  29. G. Duclos et al., Spontaneous shear flow in confined cellular nematics. Nat. Phys. 14, 728-732 (2018).
  30. C. Blanch-Mercader et al., Turbulent dynamics of epithelial cell cultures. Phys. Rev. Lett. 120, 208101 (2018).
  31. R. Aditi Simha, S. Ramaswamy, Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particles. Phys. Rev. Lett. 89, 058101 (2002).
  32. R. Green, J. Toner, V. Vitelli, Geometry of thresholdless active flow in nematic microfluidics. Phys. Rev. Fluids 2, 104201 (2017).
  33. A. Joshi, E. Putzig, A. Baskaran, M. F. Hagan, The interplay between activity and fila- ment flexibility determines the emergent properties of active nematics. Soft Matter 15, 94-101 (2019).
  34. L. M. Lemma, S. J. DeCamp, Z. You, L. Giomi, Z. Dogic, Statistical properties of autonomous flows in 2D active nematics. Soft Matter 15, 3264-3272 (2019).
  35. H. Li et al., Data-driven quantitative modeling of bacterial active nematics. Proc. Natl. Acad. Sci. U.S.A. 116, 777-785 (2019).
  36. D. Geyer, A. Morin, D. Bartolo, Sounds and hydrodynamics of polar active fluids. Nat. Mater. 17, 789-793 (2018).
  37. N. Bain, D. Bartolo, Dynamic response and hydrodynamics of polarized crowds. Science 363, 46-49 (2019).
  38. V. Soni et al., The odd free surface flows of a colloidal chiral fluid. Nat. Phys. 15, 1188-1194 (2019).
  39. A. Bricard, J. B. Caussin, N. Desreumaux, O. Dauchot, D. Bartolo, Emergence of macroscopic directed motion in populations of motile colloids. Nature 503, 95-98 (2013).
  40. L. Giomi, M. J. Bowick, X. Ma, M. C. Marchetti, Defect annihilation and proliferation in active nematics. Phys. Rev. Lett. 110, 228101 (2013).
  41. R. Voituriez, J. F. Joanny, J. Prost, Spontaneous flow transition in active polar gels. Europhys. Lett. 70, 404-410 (2005).
  42. S. Shankar, S. Ramaswamy, M. C. Marchetti, M. J. Bowick, Defect unbinding in active nematics. Phys. Rev. Lett. 121, 108002 (2018).
  43. S. Shankar, M. C. Marchetti, Hydrodynamics of active defects: From order to chaos to defect ordering. Phys. Rev. X 9, 041047 (2019).
  44. R. Alert, J. F. Joanny, J. Casademunt, Universal scaling of active nematic turbulence. Nat. Phys. 16, 682-688 (2020).
  45. L. Giomi, Geometry and topology of turbulence in active nematics. Phys. Rev. X 5, 1-11 (2015).
  46. D. Marenduzzo, E. Orlandini, J. M. Yeomans, Hydrodynamics and rheology of active liquid crystals: A numerical investigation. Phys. Rev. Lett. 98, 118102 (2007).
  47. E. J. Hemingway, P. Mishra, M. C. Marchetti, S. M. Fielding, Correlation lengths in hydrodynamic models of active nematics. Soft Matter 12, 7943-7952 (2016).
  48. S. J. DeCamp, G. S. Redner, A. Baskaran, M. F. Hagan, Z. Dogic, Orientational order of motile defects in active nematics. Nat. Mater. 14, 1110-1115 (2015).
  49. M. Nakamura et al., Remote control of myosin and kinesin motors using light- activated gearshifting. Nat. Nanotechnol. 9, 693-697 (2014).
  50. J. Pathak, B. Hunt, M. Girvan, Z. Lu, E. Ott, Model-free prediction of large spatiotem- porally chaotic systems from data: A reservoir computing approach. Phys. Rev. Lett. 120, 024102 (2018).
  51. L. Giomi, M. J. Bowick, P. Mishra, R. Sknepnek, M. C. Marchetti, Defect dynamics in active nematics. Philos. Trans. Math. Phys. Eng. Sci. 372, 20130365 (2014).
  52. K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition. arXiv [Preprint] (2015). https://arxiv.org/abs/1512.03385 (Accessed 19 February 2021).
  53. J. Palacci, S. Sacanna, A. P. Steinberg, D. J. Pine, P. M. Chaikin, Living crystals of light- activated colloidal surfers. Science 339, 936-940 (2013).
  54. C. Peng, T. Turiv, Y. Guo, Q. H. Wei, O. D. Lavrentovich, Command of active matter by topological defects and patterns. Science 354, 882-885 (2016).
  55. S. Čopar, Kos, T. Emeršič, U. Tkalec, Microfluidic control over topological states in channel-confined nematic flows. Nat. Commun. 11, 59 (2020).
  56. J. Gautrais et al., Deciphering interactions in moving animal groups. PLoS Comput. Biol. 8, e1002678 (2012).
  57. J. Ling, A. Kurzawski, J. Templeton, Reynolds averaged turbulence modelling using deep neural networks with embedded invariance. J. Fluid Mech. 807, 155-166 (2016).
  58. K. Duraisamy, G. Iaccarino, H. Xiao, Turbulence modeling in the age of data. Annu. Rev. Fluid Mech. 51, 357-377 (2019).
  59. S. L. Brunton, B. R. Noack, P. Koumoutsakos, Machine learning for fluid mechanics. Annu. Rev. Fluid Mech. 52, 477-508 (2020).
  60. R. Zhang, Y. Zhou, M. Rahimi, J. J. De Pablo, Dynamic structure of active nematic shells. Nat. Commun. 7, 13483 (2016).
  61. A. Sokolov, A. Mozaffari, R. Zhang, J. J. De Pablo, A. Snezhko, Emergence of radial tree of bend stripes in active nematics. Phys. Rev. X 9, 031014 (2019).
  62. C. Denniston, E. Orlandini, J. M. Yeomans, Lattice Boltzmann simulations of liquid crystal hydrodynamics. Phys. Rev. E 63, 056702 (2001).
  63. M. Ravnik, S. Žumer, Landau-de Gennes modelling of nematic liquid crystal colloids. Liq. Cryst. 36, 1201-1214 (2009).
  64. C. Denniston, D. Marenduzzo, E. Orlandini, J. M. Yeomans, Lattice Boltzmann algo- rithm for three-dimensional liquid-crystal hydrodynamics. Philos. Trans. Math. Phys. Eng. Sci. 362, 1745-1754 (2004).
  65. R. Zhang, T. Roberts, I. S. Aranson, J. J. De Pablo, Lattice Boltzmann simulation of asymmetric flow in nematic liquid crystals with finite anchoring. J. Chem. Phys. 144, 084905 (2016).
  66. J. Colen, M. Han, R. Zhang, ML ActiveNematics. Zenodo. https://doi.org/10.5281/ zenodo.4541607. Deposited 15 February 2021.
  67. P. G. de Gennes, J. Prost, The Physics of Liquid Crystals (Oxford University Press, 1995). P. M. Chaikin, T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, 1995).
  68. R. Zhang, N. Kumar, J. L. Ross, M. L. Gardel, J. J. De Pablo, Interplay of structure, elas- ticity, and dynamics in actin-based nematic materials. Proc. Natl. Acad. Sci. U.S.A. 115, E124-E133 (2017).
  69. T. D. Schindler, L. Chen, P. Lebel, M. Nakamura, Z. Bryant, Engineering myosins for long-range transport on actin filaments. Nat. Nanotechnol. 9, 33-38 (2014).
  70. P. V. Ruijgrok et al., Optical control of fast and processive engineered myosins in vitro and in living cells. Nat. Chem. Biol., 10.1038/s41589-021-00740-7 (2021).
  71. R. Subramanian, J. Gelles, Two distinct modes of processive kinesin movement in mixtures of ATP and AMP-PNP. J. Gen. Physiol. 130, 445-455 (2007).
  72. M. Castoldi, A. V. Popov, Purification of brain tubulin through two cycles of polymerization-depolymerization in a high-molarity buffer. Protein Expr. Purif. 32, 83-88 (2003).
  73. A. Hyman et al., "Preparation of modified tubulins" in Molecular Motors and the Cytoskeleton Methods in Enzymology, R. B. Vallee, Ed. (Academic Press, 1991), vol. 196, pp. 478-485.