Structure-function scaling of bounded two-dimensional turbulence
2011, Physical Review E
https://doi.org/10.1103/PHYSREVE.84.026310Abstract
Statistical properties of forced two-dimensional turbulence generated in two different flow domains are investigated by numerical simulations. The considered geometries are the square domain and the periodic channel domain, both bounded by lateral no-slip sidewalls. The focus is on the direct enstrophy cascade range and how the statistical properties change in the presence of no-slip boundaries. The scaling exponents of the velocity and the vorticity structure functions are compared to the classical Kraichnan-Batchelor-Leith (KBL) theory, which assumes isotropy, homogeneity, and self-similarity for turbulence scales between the forcing and dissipation scale. Our investigation reveals that in the interior of the flow domain, turbulence can be considered statistically isotropic and locally homogeneous for the enstrophy cascade range, but it is weakly intermittent. However, the scaling of the vorticity structure function indicates a steeper slope for the energy spectrum than the KBL theory predicts. Near the walls the turbulence is strongly anisotropic at all flow scales.
References (38)
- U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov (Cambridge University Press, Cambridge, 1995).
- L. F. Richardson, Weather Prediction by Numerical Process (Cambridge University Press, Cambridge, 1922).
- L. Onsager, Nuovo Cimento Suppl. 6, 279 (1949).
- R. Fjørtoft, Tellus 5, 225 (1953).
- R. H. Kraichnan, Phys. Fluids 10, 1417 (1967).
- R. H. Kraichnan, J. Fluid Mech. 47, 525 (1971).
- G. K. Batchelor, Phys. Fluids Suppl. II 12, 233 (1969).
- C. E. Leith, Phys. Fluids 11, 671 (1968).
- D. Lilly, Phys. Fluids Suppl. II 12, 240 (1969).
- G. Boffetta, J. Fluid Mech. 589, 253 (2007).
- H. J. H. Clercx and G. J. F. van Heijst, Appl. Mech. Rev. 62, 020802 (2009).
- L. M. Smith and V. Yakhot, Phys. Rev. Lett. 71, 352 (1993).
- L. M. Smith and V. Yakhot, J. Fluid Mech. 274, 115 (1994).
- M. Hossain, W. H. Matthaeus, and D. Montgomery, J. Plasma Phys. 30, 479 (1983).
- H. J. H. Clercx and G. J. F. van Heijst, Phys. Rev. Lett. 85, 306 (2000).
- M. G. Wells, H. J. H. Clercx, and G. J. F. van Heijst, J. Fluid Mech. 573, 339 (2007).
- W. Kramer, H. J. H. Clercx, and G. J. F. van Heijst, Phys. Fluids 20, 056602 (2008).
- W. Kramer, Ph.D. thesis, Eindhoven University of Technology, The Netherlands (2007).
- G. H. Keetels, U. D'Ortona, W. Kramer, H. J. H. Clercx, K. Schneider, and G. J. F. van Heijst, J. Comput. Phys. 227, 919 (2007).
- O. Daube, J. Comput. Phys. 103, 402 (1992).
- W. Kress and P. Lötstedt, Comput. Methods Appl. Mech. Eng. 195, 4433 (2006).
- H. J. H. Clercx, J. Comput. Phys. 137, 186 (1997).
- G. Carbou and P. Fabrie, Adv. Differ. Equ. 8, 1453 (2003).
- G. H. Keetels, H. J. H. Clercx, and G. J. F. van Heijst, Eur. J. Mech. B/Fluids 29, 1 (2010).
- W. J. T. Bos, S. Neffaa, and K. Schneider, Phys. Plasmas 17, 092302 (2010).
- K. Schneider and M. Farge, Phys. Rev. Lett. 95, 244502 (2005).
- B. Kadoch, W. J. T. Bos, and K. Schneider, Phys. Rev. Lett. 100, 184503 (2008).
- W. J. T. Bos, S. Neffaa, and K. Schneider, Phys. Rev. Lett. 101, 235003 (2008).
- G. H. Keetels, H. J. H. Clercx, and G. J. F. van Heijst, Physica D 238, 1129 (2009).
- G. H. Keetels, H. J. H. Clercx, and G. J. F. van Heijst, Phys. Rev. E 78, 036301 (2008).
- G. H. Keetels, Ph.D. thesis, Eindhoven University of Technol- ogy, The Netherlands (2008).
- A. Babiano, C. Basdevant, and R. Sadourny, J. Atmos. Sci. 42, 941 (1985).
- G. Boffetta, A. Celani, S. Musacchio, and M. Vergassola, Phys. Rev. E 66, 026304 (2002).
- R. Benzi, S. Ciliberto, R. Tripiccione, C. Baudet, F. Massaioli, and S. Succi, Phys. Rev. E 48, 29 (1993).
- A. Babiano, B. Dubrulle, and P. Frick, Phys. Rev. E 52, 3719 (1995).
- R. Benzi, G. Paladin, and A. Vulpiani, Phys. Rev. A 42, 3654 (1990).
- N. Kevlahan and M. Farge, J. Fluid Mech. 346, 49 (1997).
- D. Bernard, Phys. Rev. E 60, 6184 (1999).