Academia.eduAcademia.edu

Outline

Direct sums of semi-projective modules

2012, Colloquium Mathematicum

https://doi.org/10.4064/CM127-1-5

Abstract

We investigate when the direct sum of semi-projective modules is semiprojective. It is proved that if R is a right Ore domain with right quotient division ring Q = R and X is a free right R-module then the right R-module Q ⊕ X is semi-projective if and only if there does not exist an R-epimorphism from X to Q.

References (13)

  1. F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer, New York, 1974.
  2. J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, Lifting Modules, Birkhäuser, Basel, 2006.
  3. L. Fuchs and K. M. Rangaswamy, Quasi-projective abelian groups, Bull. Soc. Math. France 98 (1970), 5-8.
  4. K. R. Goodearl and R. B. Warfield, Jr., An Introduction to Noncommutative Noethe- rian Rings, London Math. Soc. Student Texts 16, Cambridge Univ. Press, Cam- bridge, 1989.
  5. A. Haghany and M. R. Vedadi, Study of semi-projective retractable modules, Algebra Colloq. 14 (2007), 489-496.
  6. J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, Wiley- Interscience, Chichester, 1987.
  7. S. H. Mohamed and B. J. Müller, Continuous and Discrete Modules, London Math. Soc. Lecture Note Ser. 147, Cambridge Univ. Press, Cambridge, 1990.
  8. K. M. Rangaswamy, Abelian groups with endomorphic images of special types, J. Al- gebra 6 (1967), 271-280.
  9. H. Tansee and S. Wongwai, A note on semi-projective modules, Kyungpook Math. J. 42 (2002), 369-380.
  10. R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Phila- delphia, 1991.
  11. R. Wisbauer, Modules and Algebras: Bimodule Structure and Group Actions on Algebras, Pitman Monogr. Surveys Pure Appl. Math. 81, Longman, 1996.
  12. Derya Keskin Tütüncü, Berke Kalebogaz Department of Mathematics Hacettepe University 06800 Beytepe, Ankara, Turkey E-mail: keskin@hacettepe.edu.tr bkuru@hacettepe.edu.tr
  13. Patrick F. Smith Department of Mathematics Glasgow University Glasgow G12 8QW, Scotland E-mail: pfs@maths.gla.ac.uk Received 23 November 2011; revised 17 April 2012