Academia.eduAcademia.edu

Outline

A note on generalizations of semisimple modules

Abstract

A left module M over an arbitrary ring is called an RD-module (or an RS-module) if every submodule N of M with Rad(M) ⊆ N is a direct summand of (a supplement in, respectively) M. In this paper, we investigate the various properties of RD-modules and RS-modules. We prove that M is an RD-module if and only if M = Rad(M) ⊕ X, where X is semisimple. We show that a finitely generated RS-module is semisimple. This gives us the characterization of semisimple rings in terms of RS-modules. We completely determine the structure of these modules over Dedekind domains.

References (8)

  1. Alizade R., Bilhan G., Smith P. F., Modules whose maximal submodules have supplements, Comm. Algebra 29 (2001), no. 6, 2389-2405.
  2. Büyükaşık E., Pusat-Yılmaz D., Modules whose maximal submodules are supplements, Hacet. J. Math. Stat. 39 (2010), no. 4, 477-487.
  3. Büyükaşık E., Türkmen E., Strongly radical supplemented modules, Ukrainian Math. J. 63 (2012), no. 8, 1306-1313.
  4. Lomp C., On semilocal modules and rings, Comm. Algebra (1999), no. 4, 1921-1935.
  5. Nebiyev C., Pancar A., On supplement submodules, Ukrainian Math. J. 65 (2013), no. 7, 1071-1078.
  6. Türkmen B. N., Pancar A., Generalizations of ⊕-supplemented modules, Ukrainian Math. J. 65 (2013), no. 4, 612-622.
  7. Türkmen B. N., Türkmen E., On a generalization of weakly supplemented modules, An. S ¸tiin. Univ. Al. I. Cuza Din Iaşi. Mat. (N.S.) 63 (2017), no. 2, 441-448.
  8. Wisbauer R., Foundations of Module and Ring Theory, A handbook for study and research, Algebra, Logic and Applications, 3, Gordon and Breach Science Publishers, Philadelphia, 1991.