A note on generalizations of semisimple modules
Abstract
A left module M over an arbitrary ring is called an RD-module (or an RS-module) if every submodule N of M with Rad(M) ⊆ N is a direct summand of (a supplement in, respectively) M. In this paper, we investigate the various properties of RD-modules and RS-modules. We prove that M is an RD-module if and only if M = Rad(M) ⊕ X, where X is semisimple. We show that a finitely generated RS-module is semisimple. This gives us the characterization of semisimple rings in terms of RS-modules. We completely determine the structure of these modules over Dedekind domains.
References (8)
- Alizade R., Bilhan G., Smith P. F., Modules whose maximal submodules have supplements, Comm. Algebra 29 (2001), no. 6, 2389-2405.
- Büyükaşık E., Pusat-Yılmaz D., Modules whose maximal submodules are supplements, Hacet. J. Math. Stat. 39 (2010), no. 4, 477-487.
- Büyükaşık E., Türkmen E., Strongly radical supplemented modules, Ukrainian Math. J. 63 (2012), no. 8, 1306-1313.
- Lomp C., On semilocal modules and rings, Comm. Algebra (1999), no. 4, 1921-1935.
- Nebiyev C., Pancar A., On supplement submodules, Ukrainian Math. J. 65 (2013), no. 7, 1071-1078.
- Türkmen B. N., Pancar A., Generalizations of ⊕-supplemented modules, Ukrainian Math. J. 65 (2013), no. 4, 612-622.
- Türkmen B. N., Türkmen E., On a generalization of weakly supplemented modules, An. S ¸tiin. Univ. Al. I. Cuza Din Iaşi. Mat. (N.S.) 63 (2017), no. 2, 441-448.
- Wisbauer R., Foundations of Module and Ring Theory, A handbook for study and research, Algebra, Logic and Applications, 3, Gordon and Breach Science Publishers, Philadelphia, 1991.