Academia.eduAcademia.edu

Outline

Rings with quasi-projective left ideals

Pacific Journal of Mathematics

Abstract
sparkles

AI

This paper explores the structural properties of perfect left quasi-projective (qp) rings, establishing that all left hereditary rings are included in the class of left qp-rings. It examines the distinctions between commutative principal ideal artinian rings and qp-rings, as well as exploring the relationship between local rings and quasi-projective modules. Key theorems related to the isomorphism of left ideals and the conditions under which a local perfect ring qualifies as a left qp-ring are presented, alongside several lemmas supporting these findings. The results indicate that the properties of quasi-projective modules diverge significantly in the context of perfect rings, highlighting the intricate structures within ring theory.

References (59)

  1. J. Ahsan, Rings all of whose cyclic modules are quasi-injective, Proc. London Math. Soc, 27 (1973), 425-443.
  2. M. Auslander, On the dimension of modules and algebras III, global dimension, Nagoya Math. J., 9 (1955), 67-77.
  3. H. Bass, Finitistic dimension and a homological generalization of semiprimary rings, Trans. Amer. Math. Soc, 95 (1960), 466-488.
  4. C. Faith, Algebra-Rings, Modules and Categories J., Springer Verlag (1973).
  5. K. Fuller, Generalized uniserial rings and their Kupisch Series, Math. Zeitschr., 106 (1968), 248-260.
  6. S. K. Jain, S. Mohamed, and S. Singh, Rings in which every right ideal is quasi-injective, Pacific J. Math., 31 (1969), 73-79.
  7. R. E. Johnson and E. T. Wong, Quasi-injective modules and irreducible rings, J. London Math. Soc, 36 (1961), 260-268.
  8. G. Klatt and L. Levy, Pre-self-injective rings, Trans. Amer. Math. Soc, 137 (1969), 407-419.
  9. A. Koehler, Rings with quasi-injective cyclic modules, Quart. J. Math. Oxford, Ser. 2 (1974), 51-55.
  10. Quasi-projective and quasi-injective modules, Pacific J. Math., 36 (1971), 713-720.
  11. L. Levy, Commutative rings whose homomorphic images are self-injective, Pacific J. Math., 18 (1966), 149-153.
  12. Y. Miyashita, Quasi-projective modules, perfect modules, and a theorem for modular lattices, J. Fac. Sci. Hokkaido University, Ser. 1 19 (1966), 86-110.
  13. K. Rangaswamy and N. Vaneja, Quasi-projectives in abelian and module categories, Pacific J. Math., 43 (1972), 221-238.
  14. L. Wu and J. Jans, On quasi-projectives, Illinois J. Math., 11 (1967), 439-448. Received February 11, 1974. A part of this work was done while Surjeet Singh was at Bedford College, London, under the Younger Scientists Exchange Programme between India and U.K. OHIO UNIVERSITY, ATHENS, OHIO 45701
  15. AND ALIGARH MUSLIM UNIVERSITY, INDIA. Vol. 60, No. 1
  16. D.E. Bennett, Strongly unicoherent continua 1
  17. Walter R. Bloom, Sets ofp-spectral synthesis
  18. R. T. Bumby and D. E. Dobbs, Λmitsur cohomology of quadratic extensions: Formulas and number-theoretic examples
  19. W. W. Comfort, Compactness -like properties for generalized weak topological sums
  20. D. R. Dunninger and J. Locker, Monotone operators and nonlinear biharmonic boundary value problems
  21. T. S. Erickson, W. S. Martindale, 3rd and J. M. Osborn, Prime nonassociative algebras
  22. P. Fischer, On the inequality ^Pi t&l>i 65
  23. G. Fox and P. Morales, Compact subsets of a Tychonoff set 75
  24. R. Gilmer and J. F. Hoffmann, A characterization of Prύfer domains in terms of polynomials
  25. L. C. Glaser, On tame Cantor sets in spheres having the same projection in each direction
  26. Z. Goseki, On semigroups in which X = XYX = XZX if and only if X = XYZX 103 E. Grosswald, Rational valued series of exponentials and divisor functions Ill D. Handelman, Strongly semiprime rings 115 J. N. Henry and D. C. Taylor, The β topology for w*-algebras
  27. M. J. Hodel, Enumeration of weighted p-line arrays 141 S. K. Jain and S. Singh, Rings with quasiprojective left ideals 169 S. Jeyaratnam, The diophantine equation Y(Y + m)(Y + 2m)x (Y + 3m) = 2X(X+m)(X + 2m)(X + 3m)
  28. R. Kane, On loop spaces without p torsion 189
  29. Alvin J. Kay, Nonlinear integral equations and product integrals
  30. A. S. Kechris, Countable ordinals and the analytic hierarchy, 1
  31. Ka-Sing Lau, A representation theorem for isometries ofC(X, E)
  32. I. Madsen, On the action of the Dyer-Lashof algebra inH*(G) 235
  33. R. C. Metzler, Positive linear functions, integration, and ChoqueVs theorem 277 A. Nobile, Some properties of the Nash blowing-up
  34. G. E. Petersen and G. V. Welland, Plessner's theorem for Riesz conjugates Vol. 60, No. 1 September, 1975
  35. Donald Earl Bennett, Strongly unicoherent continua . . . . . . . . . . . . . . . . . . . . . .
  36. Walter Russell Bloom, Sets of p-spectral synthesis . . . . . . . . . . . . . . . . . . . . . . .
  37. Richard Thomas Bumby and David Earl Dobbs, Amitsur cohomology of quadratic extensions: formulas and number-theoretic examples . . . . . . .
  38. W. Wistar (William) Comfort, Compactness-like properties for generalized weak topological sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
  39. Dennis Robert Dunninger and John Stewart Locker, Monotone operators and nonlinear biharmonic boundary value problems . . . . . . . . . . . . . . . . .
  40. Theodore Erickson, Wallace Smith Martindale, III and J. Marshall Osborn, Prime nonassociative algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
  41. Pál Fischer, On the inequality n i=0 [ f ( p i )/ f (q i )] p i ≥ i . . . . . . . . . . . . . . . . .
  42. Geoffrey Fox and Pedro Morales, Compact subsets of a Tychonoff set . . . . . . . 75
  43. Robert William Gilmer, Jr. and Joseph F. Hoffmann, A characterization of Prüfer domains in terms of polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
  44. Leslie C. Glaser, On tame Cantor sets in spheres having the same projection in each direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
  45. Zensiro Goseki, On semigroups in which x = x yx = x zx if and only if x = x yzx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
  46. Emil Grosswald, Rational valued series of exponentials and divisor functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
  47. David E. Handelman, Strongly semiprime rings . . . . . . . . . . . . . . . . . . . . . . . . . . 115
  48. Jackson Neal Henry and Donald Curtis Taylor, The β topology for W * -algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
  49. Margaret Jones Hodel, Enumeration of weighted p-line arrays . . . . . . . . . . . . . 141
  50. Surender Kumar Jain and Surjeet Singh, Rings with quasi-projective left ideals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
  51. S. Jeyaratnam, The Diophantine equation Y (Y + m)(Y + 2m)(Y + 3m) = 2X (X + m)(X + 2m)(X + 3m) . . . . . . . 183
  52. Richard Michael Kane, On loop spaces without p torsion . . . . . . . . . . . . . . . . . 189
  53. Alvin John Kay, Nonlinear integral equations and product integrals . . . . . . . . 203
  54. Alexander S. Kechris, Countable ordinals and the analytical hierarchy. I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
  55. Ka-Sing Lau, A representation theorem for isometries of C(X, E) . . . . . . . . . . 229
  56. Ib Henning Madsen, On the action of the Dyer-Lashof algebra in H * (G) . . . 235
  57. Richard C. Metzler, Positive linear functions, integration, and Choquet's theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
  58. Augusto Nobile, Some properties of the Nash blowing-up . . . . . . . . . . . . . . . . . 297
  59. Gerald E. Peterson and Grant Welland, Plessner's theorem for Riesz conjugates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307