Rings with quasi-projective left ideals
Pacific Journal of Mathematics
Abstract
AI
AI
This paper explores the structural properties of perfect left quasi-projective (qp) rings, establishing that all left hereditary rings are included in the class of left qp-rings. It examines the distinctions between commutative principal ideal artinian rings and qp-rings, as well as exploring the relationship between local rings and quasi-projective modules. Key theorems related to the isomorphism of left ideals and the conditions under which a local perfect ring qualifies as a left qp-ring are presented, alongside several lemmas supporting these findings. The results indicate that the properties of quasi-projective modules diverge significantly in the context of perfect rings, highlighting the intricate structures within ring theory.
References (59)
- J. Ahsan, Rings all of whose cyclic modules are quasi-injective, Proc. London Math. Soc, 27 (1973), 425-443.
- M. Auslander, On the dimension of modules and algebras III, global dimension, Nagoya Math. J., 9 (1955), 67-77.
- H. Bass, Finitistic dimension and a homological generalization of semiprimary rings, Trans. Amer. Math. Soc, 95 (1960), 466-488.
- C. Faith, Algebra-Rings, Modules and Categories J., Springer Verlag (1973).
- K. Fuller, Generalized uniserial rings and their Kupisch Series, Math. Zeitschr., 106 (1968), 248-260.
- S. K. Jain, S. Mohamed, and S. Singh, Rings in which every right ideal is quasi-injective, Pacific J. Math., 31 (1969), 73-79.
- R. E. Johnson and E. T. Wong, Quasi-injective modules and irreducible rings, J. London Math. Soc, 36 (1961), 260-268.
- G. Klatt and L. Levy, Pre-self-injective rings, Trans. Amer. Math. Soc, 137 (1969), 407-419.
- A. Koehler, Rings with quasi-injective cyclic modules, Quart. J. Math. Oxford, Ser. 2 (1974), 51-55.
- Quasi-projective and quasi-injective modules, Pacific J. Math., 36 (1971), 713-720.
- L. Levy, Commutative rings whose homomorphic images are self-injective, Pacific J. Math., 18 (1966), 149-153.
- Y. Miyashita, Quasi-projective modules, perfect modules, and a theorem for modular lattices, J. Fac. Sci. Hokkaido University, Ser. 1 19 (1966), 86-110.
- K. Rangaswamy and N. Vaneja, Quasi-projectives in abelian and module categories, Pacific J. Math., 43 (1972), 221-238.
- L. Wu and J. Jans, On quasi-projectives, Illinois J. Math., 11 (1967), 439-448. Received February 11, 1974. A part of this work was done while Surjeet Singh was at Bedford College, London, under the Younger Scientists Exchange Programme between India and U.K. OHIO UNIVERSITY, ATHENS, OHIO 45701
- AND ALIGARH MUSLIM UNIVERSITY, INDIA. Vol. 60, No. 1
- D.E. Bennett, Strongly unicoherent continua 1
- Walter R. Bloom, Sets ofp-spectral synthesis
- R. T. Bumby and D. E. Dobbs, Λmitsur cohomology of quadratic extensions: Formulas and number-theoretic examples
- W. W. Comfort, Compactness -like properties for generalized weak topological sums
- D. R. Dunninger and J. Locker, Monotone operators and nonlinear biharmonic boundary value problems
- T. S. Erickson, W. S. Martindale, 3rd and J. M. Osborn, Prime nonassociative algebras
- P. Fischer, On the inequality ^Pi t&l>i 65
- G. Fox and P. Morales, Compact subsets of a Tychonoff set 75
- R. Gilmer and J. F. Hoffmann, A characterization of Prύfer domains in terms of polynomials
- L. C. Glaser, On tame Cantor sets in spheres having the same projection in each direction
- Z. Goseki, On semigroups in which X = XYX = XZX if and only if X = XYZX 103 E. Grosswald, Rational valued series of exponentials and divisor functions Ill D. Handelman, Strongly semiprime rings 115 J. N. Henry and D. C. Taylor, The β topology for w*-algebras
- M. J. Hodel, Enumeration of weighted p-line arrays 141 S. K. Jain and S. Singh, Rings with quasiprojective left ideals 169 S. Jeyaratnam, The diophantine equation Y(Y + m)(Y + 2m)x (Y + 3m) = 2X(X+m)(X + 2m)(X + 3m)
- R. Kane, On loop spaces without p torsion 189
- Alvin J. Kay, Nonlinear integral equations and product integrals
- A. S. Kechris, Countable ordinals and the analytic hierarchy, 1
- Ka-Sing Lau, A representation theorem for isometries ofC(X, E)
- I. Madsen, On the action of the Dyer-Lashof algebra inH*(G) 235
- R. C. Metzler, Positive linear functions, integration, and ChoqueVs theorem 277 A. Nobile, Some properties of the Nash blowing-up
- G. E. Petersen and G. V. Welland, Plessner's theorem for Riesz conjugates Vol. 60, No. 1 September, 1975
- Donald Earl Bennett, Strongly unicoherent continua . . . . . . . . . . . . . . . . . . . . . .
- Walter Russell Bloom, Sets of p-spectral synthesis . . . . . . . . . . . . . . . . . . . . . . .
- Richard Thomas Bumby and David Earl Dobbs, Amitsur cohomology of quadratic extensions: formulas and number-theoretic examples . . . . . . .
- W. Wistar (William) Comfort, Compactness-like properties for generalized weak topological sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
- Dennis Robert Dunninger and John Stewart Locker, Monotone operators and nonlinear biharmonic boundary value problems . . . . . . . . . . . . . . . . .
- Theodore Erickson, Wallace Smith Martindale, III and J. Marshall Osborn, Prime nonassociative algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
- Pál Fischer, On the inequality n i=0 [ f ( p i )/ f (q i )] p i ≥ i . . . . . . . . . . . . . . . . .
- Geoffrey Fox and Pedro Morales, Compact subsets of a Tychonoff set . . . . . . . 75
- Robert William Gilmer, Jr. and Joseph F. Hoffmann, A characterization of Prüfer domains in terms of polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
- Leslie C. Glaser, On tame Cantor sets in spheres having the same projection in each direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
- Zensiro Goseki, On semigroups in which x = x yx = x zx if and only if x = x yzx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
- Emil Grosswald, Rational valued series of exponentials and divisor functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
- David E. Handelman, Strongly semiprime rings . . . . . . . . . . . . . . . . . . . . . . . . . . 115
- Jackson Neal Henry and Donald Curtis Taylor, The β topology for W * -algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
- Margaret Jones Hodel, Enumeration of weighted p-line arrays . . . . . . . . . . . . . 141
- Surender Kumar Jain and Surjeet Singh, Rings with quasi-projective left ideals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
- S. Jeyaratnam, The Diophantine equation Y (Y + m)(Y + 2m)(Y + 3m) = 2X (X + m)(X + 2m)(X + 3m) . . . . . . . 183
- Richard Michael Kane, On loop spaces without p torsion . . . . . . . . . . . . . . . . . 189
- Alvin John Kay, Nonlinear integral equations and product integrals . . . . . . . . 203
- Alexander S. Kechris, Countable ordinals and the analytical hierarchy. I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
- Ka-Sing Lau, A representation theorem for isometries of C(X, E) . . . . . . . . . . 229
- Ib Henning Madsen, On the action of the Dyer-Lashof algebra in H * (G) . . . 235
- Richard C. Metzler, Positive linear functions, integration, and Choquet's theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
- Augusto Nobile, Some properties of the Nash blowing-up . . . . . . . . . . . . . . . . . 297
- Gerald E. Peterson and Grant Welland, Plessner's theorem for Riesz conjugates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307