Abstract
First we consider the solutions of the general "cubic" equation a_{1}x^{r1}a_{2}x^{r2}a_{3}x^{r3}=1 (with r1,r2,r3 in {1,-1}) in the symmetric group S_{n}. In certain cases this equation can be rewritten as aya^{-1}=y^{2} or as aya^{-1}=y^{-2}, where a in S_{n} depends on the a_{i}'s and the new unknown permutation y in S_{n} is a product of x (or x^{-1}) and one of the permutations a_{i}^{1} and a_{i}^{-1}. Using combinatorial arguments and some basic number theoretical facts, we obtain results about the solutions of the so-called power conjugate equation aya^{-1}=y^{e} in S_{n}, where e is an integer exponent.
References (8)
- S. Chowla, I.N. Herstein, W.R. Scott: The solutions of x d = 1 in symmetric groups, Norske Vid. Selsk. (Trindheim) 25, 29-31 (1952)
- A. Evangelidou: The Solution of Length Five Equations Over Groups, Communications in Algebra, 35:6, 1914-1948 (2007)
- H.Finkelstein, K.I. Mandelberg: On Solutions of "Equations in Symmetric Groups", Journal of Combinatorial Theory, Series A, 25, 142-152 (1978)
- M. Gerstenhaber, O. S. Rothaus: The solution of sets of equations in groups, Proc. Nat. Acad. Sci. U.S.A. 48, 1531-1533 (1962)
- I. M. Isaacs, G. R. Robinson: On a Theorem of Frobenius: Solutions of x n = 1 in Finite Groups, American Mathematical Monthly, Vol. 99, No. 4, pp. 352-354 (Apr., 1992)
- I. Martin Isaacs: Finite Group Theory, American Mathematical Society, 2008
- R. C. Lyndon: Equations in groups, Boletim Da Sociedade Brasileira de Matemática, 11(1), 79-102 (1980)
- L. Moser, M. Wyman: On solutions of x d = 1 in symmetric groups, Canad. J. Math. 7, 159-168 (1955)