Products of conjugate permutations
1981, Pacific Journal of Mathematics
https://doi.org/10.2140/PJM.1981.94.47Abstract
Using combinatorial methods, we will prove the following theorem on the permutation group S o of a countable set: If a permutation pεS 0 contains at least one infinite cycle then any permutation of S o is a product of three permutations each conjugate to p. Similar results for permutations of uncoutable sets are shown and classical group theoretical results are derived from this.
References (10)
- R. Baer, Die Kompositionsreihe der Gruppe aller eineindeutigen Abbildungen einer un- endlichen Menge auf sick, Studia Math., 5 (1934), 15-17.
- E. A. Bertram, Permutations as products of conjugate infinite cycles, Pacific J. Math., 39 (1971), 275-284.
- On a theorem of Schreier and Ulam for countable permutations, J. Algebra, 24 (1973), 316-322.
- M. Droste and R. Gobel, On a Theorem of Baer, Schreier and Ulam for Permuta- tions, J. Algebra, 58 (1979), 282-290.
- A. B. Gray, Infinite symmetric and monomial groups, Ph. D.-Thesis, New Mexico State University, Las Cruces, N.M. 1960.
- G. Moran, The product of two reflection classes of the symmetric group, Discrete Math., 15 (1976), 63-77.
- O. Ore, Some remarks on commutators, Proc. Amer. Math. Soc, 2 (1951), 307-314.
- J. Schreier and S. Ulam, Uber die Permutationsgruppe der natiirlichen Zahlenfolge, Studia Math., 4 (1933), 134-141.
- H. Wielandt, "Unendliche Permutationsgtuppen", Tubingen 1959/60; reprinted, York University, Toronto, Canada, 1967.
- Received February 2, 1979, and in revised form May 14, 1980. FACHBEREICH 6-MATHEMATIK UNIVERSITAT ESSEN, GHS D-4300 ESSEN, GERMANY