Academia.eduAcademia.edu

Outline

Products of conjugate permutations

1981, Pacific Journal of Mathematics

https://doi.org/10.2140/PJM.1981.94.47

Abstract

Using combinatorial methods, we will prove the following theorem on the permutation group S o of a countable set: If a permutation pεS 0 contains at least one infinite cycle then any permutation of S o is a product of three permutations each conjugate to p. Similar results for permutations of uncoutable sets are shown and classical group theoretical results are derived from this.

References (10)

  1. R. Baer, Die Kompositionsreihe der Gruppe aller eineindeutigen Abbildungen einer un- endlichen Menge auf sick, Studia Math., 5 (1934), 15-17.
  2. E. A. Bertram, Permutations as products of conjugate infinite cycles, Pacific J. Math., 39 (1971), 275-284.
  3. On a theorem of Schreier and Ulam for countable permutations, J. Algebra, 24 (1973), 316-322.
  4. M. Droste and R. Gobel, On a Theorem of Baer, Schreier and Ulam for Permuta- tions, J. Algebra, 58 (1979), 282-290.
  5. A. B. Gray, Infinite symmetric and monomial groups, Ph. D.-Thesis, New Mexico State University, Las Cruces, N.M. 1960.
  6. G. Moran, The product of two reflection classes of the symmetric group, Discrete Math., 15 (1976), 63-77.
  7. O. Ore, Some remarks on commutators, Proc. Amer. Math. Soc, 2 (1951), 307-314.
  8. J. Schreier and S. Ulam, Uber die Permutationsgruppe der natiirlichen Zahlenfolge, Studia Math., 4 (1933), 134-141.
  9. H. Wielandt, "Unendliche Permutationsgtuppen", Tubingen 1959/60; reprinted, York University, Toronto, Canada, 1967.
  10. Received February 2, 1979, and in revised form May 14, 1980. FACHBEREICH 6-MATHEMATIK UNIVERSITAT ESSEN, GHS D-4300 ESSEN, GERMANY