Academia.eduAcademia.edu

Outline

Note on primitive permutation groups and a diophantine equation

1980, Discrete Mathematics

https://doi.org/10.1016/0012-365X(80)90034-5

Abstract

It is shown that there are no transitive rank 3 extensions of the projective linear groups H, PSL(nr, q) G HS PI'L(m, q), for any prime power q and integer m a 3. In the course of the proof ahe diophantine equation 5" + 11 = x2, where m, x are positive integers, arose. As such equations can now be solved completely we had the choice of using number theory or geometry to complete the proof.

References (11)

  1. @I C91 PO1 WI M. Aschbacher, Nonexistence of rank 3 permutation groups of degree 3250 and subdegree 57, J. Algebra 19 (197 1) 538-540.
  2. E. Bannai, Primitive extensions of rank 3 of the finite projective special linear goups PSL(n, q), q = 2', Osaka J. Math. 9 (1972) 57-73.
  3. P.J. Cameron, Proofs of some theorems of W.A. Manning, Bull. London Math. Sot. 1 (1969) 349-352.
  4. D.G. Higman, Finite permutation groups of rank 3, Math. Zeit. 86 (1964) 145-156.
  5. D.G. Higman, Primitive rank 3 groups with a prime subdegree, Math. Zeit. 91 (1966) 70-86.
  6. D.C. Hunt and A.J. van der Poorten, Solving diophantine equations xz+ d = au, (submitted).
  7. D.R. Hughes, Extensions of designs and groups: projective, symplectic and certain affine groups, Math. Zeit. 89 (1965) 199-205.
  8. W. Ljunggren, Noen setninger om ubestemte linkninger av formen (x" -1)/(x -1) = yq, (Nor- wegian), Norsk Math. Tidsskr. 25 (1943) 17-20.
  9. C.E. Praeger, On primitive permutation groups with a doubly transitive suborbit, J. London Math. Sot. (2) 17 (1978) 67-73.
  10. H. Wielandt, Finite Permutation Groups (Academic Press, New York-London, 1964).
  11. H. Zassenhaus, ober transitive Erweiterungen gewisser Gruppen aus Automorphismen endlicher mehrdimensionaler Geometrien, Math. Ann. 111 (1935) 748-759.