Bi-Amalgamation of Small Weak Global Dimension
2017, International Electronic Journal of Algebra
https://doi.org/10.24330/IEJA.296160Abstract
In this paper, we characterize the bi-Amalgamations of small weak global dimension. The new results compare to previous works carried on various settings of duplications and amalgamations, and capitalize on recent results on bi-amalgamations.
References (20)
- K. Alaoui Ismaili and N. Mahdou, Coherence in amalgamated algebra along an ideal, Bull. Iranian Math. Soc., 41(3) (2015), 625-632.
- S. Bazzoni and S. Glaz, Prüfer rings, in: J. Brewer, S. Glaz, W. Heinzer, B. Olberding (Eds.), Multiplicative ideal theory in commutative algebra: A tribute to the work of Robert Gilmer, Springer, New York, (2006), 55-72.
- M. B. Boisen, Jr. and P. B. Sheldon, CPI-extensions: overrings of integral domains with special prime spectrum, Canad. J. Math., 29(4) (1977), 722-737.
- M. Chhiti, M. Jarrar, S. Kabbaj and N. Mahdou, Prüfer conditions in an amal- gamated duplication of a ring along an ideal, Comm. Algebra, 43(1) (2015), 249-261.
- M. D'Anna and M. Fontana, The amalgamated duplication of a ring along a multiplicative-canonical ideal, Ark. Mat., 45(2) (2007), 241-252.
- M. D'Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl., 6(3) (2007), 443-459.
- M. D'Anna, C. A. Finacchiaro and M. Fontana, Amalgamated algebras along an ideal, Commutative algebra and its applications, Walter de Gruyter, Berlin, (2009), 155-172.
- M. D'Anna, C. A. Finacchiaro and M. Fontana, Properties of chains of prime ideals in an amalgamated algebra along an ideal, J. Pure Appl. Algebra, 214(9) (2010), 1633-1641.
- L. Fuchs, Uber die ideale arithmetischer ringe, Comment. Math. Helv., 23 (1949), 334-341.
- S. Glaz, Commutative Coherent Rings, Lecture Notes in Math., 1371, Springer- Verlag, Berlin, 1989.
- S. Greco and P. Salmon, Topics in m-Adic Topologies, Springer-Verlag, Berlin, Heidelberg, 1971.
- C. U. Jensen, Arithmetical rings, Acta Math. Acad. Sci. Hungar., 17 (1966), 115-123.
- S. Kabbaj, K. Louartiti and M. Tamekkante, Bi-amalgamated algebras along ideals, J. Commut. Algebra, to appear (arXiv:1407.7074v1).
- S. Kabbaj, N. Mahdou and M. A. S. Moutui, Bi-amalgamations subject to the arithmetical property, J. Algebra Appl., 16 (2017), 1750030 (11 pages).
- I. Kaplansky, Commutative Rings, The University of Chicago Press, Chicago, 1974.
- T. Y. Lam, Exercises in Classical Ring Theory, Problem Books in Mathematics, Springer-Verlag, New York, First edition, 1995.
- T. Y. Lam, Lectures on Modules and Rings, Springer Science and Business Media, 2012.
- K. Louartiti and M. Tamekkante, Global dimension of bi-amalgamated algebras along pure ideals, Journal of Taibah University for Science, 9 (2015), 361-365.
- S. Scrivanti, Homological dimension of pullbacks, Math. Scand., 71(1) (1992), 5-15.
- Mohammed Tamekkante (Corresponding Author) and El Mehdi Bouba Department of Mathematics Faculty of Science Box 11201 Zitoune University Moulay Ismail Meknes, Morocco e-mails: tamekkante@yahoo.fr (M. Tamekkante) mehdi8bouba@hotmail.fr (E. M. Bouba)