Academia.eduAcademia.edu

Outline

Bi-Amalgamation of Small Weak Global Dimension

2017, International Electronic Journal of Algebra

https://doi.org/10.24330/IEJA.296160

Abstract

In this paper, we characterize the bi-Amalgamations of small weak global dimension. The new results compare to previous works carried on various settings of duplications and amalgamations, and capitalize on recent results on bi-amalgamations.

References (20)

  1. K. Alaoui Ismaili and N. Mahdou, Coherence in amalgamated algebra along an ideal, Bull. Iranian Math. Soc., 41(3) (2015), 625-632.
  2. S. Bazzoni and S. Glaz, Prüfer rings, in: J. Brewer, S. Glaz, W. Heinzer, B. Olberding (Eds.), Multiplicative ideal theory in commutative algebra: A tribute to the work of Robert Gilmer, Springer, New York, (2006), 55-72.
  3. M. B. Boisen, Jr. and P. B. Sheldon, CPI-extensions: overrings of integral domains with special prime spectrum, Canad. J. Math., 29(4) (1977), 722-737.
  4. M. Chhiti, M. Jarrar, S. Kabbaj and N. Mahdou, Prüfer conditions in an amal- gamated duplication of a ring along an ideal, Comm. Algebra, 43(1) (2015), 249-261.
  5. M. D'Anna and M. Fontana, The amalgamated duplication of a ring along a multiplicative-canonical ideal, Ark. Mat., 45(2) (2007), 241-252.
  6. M. D'Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl., 6(3) (2007), 443-459.
  7. M. D'Anna, C. A. Finacchiaro and M. Fontana, Amalgamated algebras along an ideal, Commutative algebra and its applications, Walter de Gruyter, Berlin, (2009), 155-172.
  8. M. D'Anna, C. A. Finacchiaro and M. Fontana, Properties of chains of prime ideals in an amalgamated algebra along an ideal, J. Pure Appl. Algebra, 214(9) (2010), 1633-1641.
  9. L. Fuchs, Uber die ideale arithmetischer ringe, Comment. Math. Helv., 23 (1949), 334-341.
  10. S. Glaz, Commutative Coherent Rings, Lecture Notes in Math., 1371, Springer- Verlag, Berlin, 1989.
  11. S. Greco and P. Salmon, Topics in m-Adic Topologies, Springer-Verlag, Berlin, Heidelberg, 1971.
  12. C. U. Jensen, Arithmetical rings, Acta Math. Acad. Sci. Hungar., 17 (1966), 115-123.
  13. S. Kabbaj, K. Louartiti and M. Tamekkante, Bi-amalgamated algebras along ideals, J. Commut. Algebra, to appear (arXiv:1407.7074v1).
  14. S. Kabbaj, N. Mahdou and M. A. S. Moutui, Bi-amalgamations subject to the arithmetical property, J. Algebra Appl., 16 (2017), 1750030 (11 pages).
  15. I. Kaplansky, Commutative Rings, The University of Chicago Press, Chicago, 1974.
  16. T. Y. Lam, Exercises in Classical Ring Theory, Problem Books in Mathematics, Springer-Verlag, New York, First edition, 1995.
  17. T. Y. Lam, Lectures on Modules and Rings, Springer Science and Business Media, 2012.
  18. K. Louartiti and M. Tamekkante, Global dimension of bi-amalgamated algebras along pure ideals, Journal of Taibah University for Science, 9 (2015), 361-365.
  19. S. Scrivanti, Homological dimension of pullbacks, Math. Scand., 71(1) (1992), 5-15.
  20. Mohammed Tamekkante (Corresponding Author) and El Mehdi Bouba Department of Mathematics Faculty of Science Box 11201 Zitoune University Moulay Ismail Meknes, Morocco e-mails: tamekkante@yahoo.fr (M. Tamekkante) mehdi8bouba@hotmail.fr (E. M. Bouba)