Note on (weak) Gorenstein global dimensions
2009
Abstract
In this note we characterize the (resp., weak) Gorenstein global dimension for an arbitrary ring. Also, we extend the well-known Hilbert's syzygy Theorem to the weak Gorenstein global dimension and we study the weak Gorenstein homological dimensions of direct product of rings, which gives examples of non-coherent rings of finite Gorenstein dimensions $>0$ and infinite classical weak dimension.
References (19)
- M. Auslander, On the dimension of modules and algebras (III), global dimension, Nagoya Math. J., 9 (1955), 67-77.
- M. Auslander and M. Bridger; Stable module theory, Memoirs. Amer. Math. Soc., 94, American Mathemat- ical Society, Providence, R.I., 1969.
- D. Bennis and N. Mahdou; Global Gorenstein Dimensions, Proceedings of the American Mathematical So- ciety. S 0002-9939(09)10099-0 (pp. 1-5). Available from math.AC/0611358v4 30 Jun 2009.
- D. Bennis and N. Mahdou; Global Gorenstein dimensions of polynomial rings and of direct products of rings, Houston Journal of Mathematics Volume 35, No. 4 (2009), 1019-1028.
- L. W. Christensen; Gorenstein dimensions, Lecture Notes in Math., Vol. 1747, Springer, Berlin, (2000).
- L. W. Christensen, A. Frankild, and H. Holm; On Gorenstein projective, injective and flat dimensions -a functorial description with applications, J. Algebra 302 (2006), 231-279.
- R. R. Colby; On Rings wich have flat injective modules, J. Algebra 35 (1975), 239252.
- N. Q. Ding and J. L. Chen; The flat dimensions of injective modules, Manuscripta Math. 78 (1993), 165-177.
- E. Enochs and O. Jenda; On Gorenstein injective modules, Comm. Algebra 21 (1993), no. 10, 3489-3501.
- E. Enochs and O. Jenda; Gorenstein injective and projective modules, Math. Z. 220 (1995), no. 4, 611-633.
- E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, de Gruyter Expositions in Mathematics, Walter de Gruyter and Co., Berlin, 2000.
- E. Enochs, O. Jenda and B. Torrecillas; Gorenstein flat modules, Nanjing Daxue Xuebao Shuxue Bannian Kan 10 (1) (1993) 1-9.
- D. J. Fieldhouse; Character modules. dimension and purilY. GlasgowMath. J. 13. 144 146 (1972)
- S. Glaz; Commutative Coherent Rings, Springer-Verlag, Lecture Notes in Mathematics, 1371 (1989).
- H. Holm; Gorenstein homological dimensions, J. Pure Appl. Algebra 189 (2004), 167-193.
- I. Kaplansky; Commutative Rings, Allyn and Bacon, Boston (1970).
- W. K. Nicholson and M. F. Youssif; Quasi-Frobenius Rings, Cambridge University Press, vol. 158, 2003.
- J. Rotman; An Introduction to Homological Algebra, Academic press, Pure and Appl. Math, A Series of Monographs and Textbooks, 25 (1979).
- B. Stenstr öm; Coherent rings and FP-injective module, J. London Math. Soc. 2 (1970), 323-329. Najib Mahdou, Department of Mathematics, Faculty of Science and Technology of Fez, Box 2202, Univer- sity S.M. Ben Abdellah Fez, Morocco., mahdou@hotmail.com Mohammed Tamekkante, Department of Mathematics, Faculty of Science and Technology of Fez, Box 2202, University S.M. Ben Abdellah Fez, Morocco., tamekkante@yahoo.fr