Academia.eduAcademia.edu

Outline

Universal spaces for asymptotic dimension via factorization

Canadian Mathematical Bulletin

https://doi.org/10.4153/S0008439523000838

Abstract

The main goal of this paper is to construct universal spaces for asymptotic dimension by generalizing to the coarse context an approach to constructing universal spaces for covering dimension using a factorization result due to Mardesic.

References (14)

  1. G. Bell, D. Moran, and A. Nagórko. Coarse property C and decomposition complexity. Topology Appl., 227:30-50, 2017.
  2. G. C. Bell and A. Nagórko. A new construction of universal spaces for asymptotic dimension. Topology Appl., 160(1):159-169, 2013.
  3. A. Dranishnikov and M. Zarichnyi. Universal spaces for asymptotic dimension. Topology Appl., 140(2- 3):203-225, 2004.
  4. A. N. Dranishnikov. Asymptotic topology. Uspekhi Mat. Nauk, 55(6(336)):71-116, 2000.
  5. Ryszard Engelking. Dimension theory, volume 19 of North-Holland Mathematical Library. North- Holland Publishing Co., Amsterdam-Oxford-New York; PWN-Polish Scientific Publishers, Warsaw, 1978. Translated from the Polish and revised by the author.
  6. M. Gromov. Asymptotic invariants of infinite groups. In Geometric group theory, Vol. 2 (Sussex, 1991), volume 182 of London Math. Soc. Lecture Note Ser., pages 1-295. Cambridge Univ. Press, Cambridge, 1993.
  7. Erik Guentner, Romain Tessera, and Guoliang Yu. A notion of geometric complexity and its application to topological rigidity. Invent. Math., 189(2):315-357, 2012.
  8. Yuankui Ma, Jeremy Siegert, and Jerzy Dydak. Coarse structure of ultrametric spaces with applica- tions. Accepted to the European Journal of Mathematics. arXiv e-prints, page arXiv:2203.05329, March 2022 Submitted.
  9. Sibe Mardešić. On covering dimension and inverse limits of compact spaces. Illinois J. Math., 4:278-291, 1960.
  10. K. Menger. Allgemeine Räume und Cartesische Räume, ii:"Über umfassendste n-dimensionale Mengen". Proc. Akad. Amsterdam, 29:1125-1128, 1926.
  11. Urysohn P. Sur un espace métrique universel. Bull. Sci. Math., 51:43-64 and 74-90, 1927.
  12. John Roe. Lectures on coarse geometry, volume 31 of University Lecture Series. American Mathematical Society, Providence, RI, 2003.
  13. Guoliang Yu. The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space. Invent. Math., 139(1):201-240, 2000.
  14. Mykhailo Zarichnyi. There is no universal proper metric spaces for asymptotic dimension 1. arXiv:2211.10761. 2022. University of Tennessee Knoxville, TN, USA Xi'an Technological University, No.2 Xuefu zhong lu, Weiyan district, Xi'an, China e-mail: jdydak@utk.edu Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel mlevine@math.bgu.ac.il Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel siegertj@post.bgu.ac.il. 2023/09/26 15:23 https://doi.org/10.4153/S0008439523000838 Published online by Cambridge University Press