Academia.eduAcademia.edu

Outline

How to Undermine Underdetermination?

https://doi.org/10.1007/S10699-014-9353-3

Abstract

The underdetermination thesis poses a threat to rational choice of scientific theories. We discuss two arguments for the thesis. One draws its strength from deductivism together with the existence thesis, and the other is defended on the basis of the failure of a reliable inductive method. We adopt a partially subjective/objective pragmatic Bayesian epistemology of science framework, and reject both arguments for the thesis. Thus, in science we are able to reinstate rational choice called into question by the underdetermination thesis.

References (61)

  1. Akaike, H. (1973) Information theory and an extension of the maximum likelihood principle. In B. N. Petrov & N. Csaki (Eds.), Second international symposium on information theory (pp. 267-281). Budapest: Akademiai Kiado.
  2. Bandyopadhyay, P.S., & Bennett, J. G. (forthcoming). Pragmatic Bayesianism and problems of scientific methodology. In R. Roy Choudhury & B. Mukherjee (Eds.), Sciences and methods. Asiatic Society, Calcutta
  3. Bandyopadhyay, P. S., Boik, R. J., & Basu, P. (1996). The curve fitting problem: A Bayesian approach. Philosophy of Science, 63(supplement), 264-272.
  4. Bandyopadhyay, P. S., & Boik, R. J. (1999). The Curve fitting problem: A Bayesian rejoinder. Philosophy of Science, 66(supplement), 391-402.
  5. Bandyopadhyay, P. S., & Brittan, G. (2001). Logical consequence and beyond: A close look at model selection in statistics. In J. Woods & B. Hepburn (Eds.), Logical consequence (pp. 1-17). Oxford: Hermes Science.
  6. Bandyopadhyay, P. S., & Brittan, G. (2006). Acceptance, evidence, and severity. Synthese, 148, 259-293.
  7. Bandyopadhyay, P. S. (2007). Why Bayesianism? A primer on a probabilistic philosophy of science. In S. K. Upadhyayay, U. Sing, & D. K. Dey (Eds.), Bayesian statistics and its applications. New Delhi: Anamaya Publishers.
  8. Bandyopadhyay, P. S., & Brittan, G. (2010). Two dogmas of strong objective Bayesianism. International Studies in the Philosophy of Science, 24, 45-65.
  9. Bandyopadhyay, P. S., & Forster, F. R. (Eds.). (2011a). Introduction. In Philosophy of Statistics. Amsterdam: Elsevier.
  10. Bandyopadhyay, P. S., & Forster, M. R. (Eds.). (2011b). Handbook of Philosophy of Statistics. Amsterdam: Elsevier.
  11. Bandyopadhyay, P. S., Greenwood, M., Brittan Jr, G., & Aho, K. A. (2013). Empiricism and/or instrumental- ism? Erkenntnis. doi:10.1007/s10670-013-9567-8.
  12. Berger, J. O. (1994). An overview of Robust Bayesian analysis [with Discussion].
  13. Test, 3, 5-124.
  14. Boik. R. J. (2004). "Commentary". In Taper and Lele (Eds.), The nature of scientific evidence (pp. 167-180). Chicago: University of Chicago Press.
  15. Boyd, R. (1996). Realism, approximate truth, and philosophical method. In D. Papineau (Ed.), Philosophy of science (pp. 215-255). Oxford: Oxford University Press.
  16. Dasgupta, A. (2011). Mathematical foundations of randomness. In P. S. Bandyopadhyay & M. R. Forster (Eds.), Handbook of philosophy of statistics (pp. 641-710). Amsterdam: Elsevier.
  17. Earman, J., & Salmon, W., et al. (1992). The confirmation of scientific theories. In M. Salmon, et al. (Eds.), Introduction to the philosophy of science. Berkeley: University of California Press.
  18. Earman, J., (1993). Underdetermination, realism, and reason. In P. French, et al. (Eds.), Midwest studies in philosophy, Vol. XVIII (pp. 19-38). Notre Dame: Notre Dame University Press.
  19. Earman. J., & Roberts. J. (Forthcoming). Contacts with the Nomic: Two challenges for deniers of humean supervinience about Laws of nature.
  20. Earman, J. (1992). Bayes or Bust?. Cambridge, Mass: MIT Press.
  21. Forster, M., & Sober, E. (1994). How to tell when simpler more unified, or less Ad Hoc theories will provide more accurate predictions. British Journal for Philosophy of Science, 45, 1-35.
  22. Good, J. (1992). The Bayes/non-Bayes compromise: A brief review. Journal of the American Statistical Association, 87, 597-606.
  23. For a Bayesian account of evidence, see Bandyopadhyay et al. (2006; 2007).
  24. We wish to thank J. Allard, R. Boik, G. Brittan, C. Howson, J. Earman, J. Good, K. Intemann, K. Kelly, J. Leplin, S. Levy, E. McIyntre, P. Mukhopadhyay, J. Roberts, S. Roy, E. Sober, S. Vineberg, John Welch, G. Wheeler and several referees of various journals for their suggestions regarding the contents of the paper. We are especially thankful to three referees of this journal for their detailed suggestions and insightful comments on the previous draft of this manuscript. Some versions of the paper were presented at the Society for the Exact Philosophy meetings in Montreal, the Methodology Conference in Santinekatan, and the American Philosophical Association meetings in Chicago. The paper has been financially supported by the NASA's Astrobiology Biogeocatalysis Research Center (Grant number # 4w 1781) and the Scholarships and Creativity grant from Montana State University.
  25. Grunbam, A., & Salmon, W. (Eds.). (1988). The Limitations of Deductivism. Berkeley: University of California Press.
  26. Harman, G. (1997). Pragmatism and reasons for belief. In C. B. Kulp & N. J. Totowa (Eds.), Realism/antirealism and epistemology (pp. 123-147). Lanham: Rowman and Littlefield.
  27. Hawking, S., & Mlodinow, L. (2010). The grand design. New York: Bantom Books.
  28. Hempel, C. (1965). Aspects of scientific explanations and other essays in philosophy of science. New York: The Free Press.
  29. Hoefer, C., & Rosenberg, A. (1994). Empirical equivalence, underdetermination, and system of the world. Philosophy of Science, 61(1994), 592-607.
  30. Howson. C., & Urbach. P. (1993) Scientific reasoning: The Bayesian approach, 2nd edition and 3rd edition, Open Court, La Salle, Illinois, 1993 & 2006.
  31. Kass, R.E., & Raftery A. F (1995) Bayes factor. Journal of the American Statistical Association, 90(430).
  32. Kelly, K. (1996). The logic of reliable enquiry. New York: Oxford University Press.
  33. Kelly, K. (2000). The logic of success. British Journal for the Philosophy of Science, 51, 639-666.
  34. Kukla, A. (1993). Laudan, leplin, empirical equivalence and underdetermination. Analysis, 53(1), 1-7.
  35. Kukla, A. (1998). Studies in scientific realism. New York: Oxford University Press.
  36. Kyung, M., Gill, J., Ghosh, M., & Cassella, G. (2010). Penalized regression, standard errors, and Bayesian lassos. Bayesian Analysis, 5, 369-412.
  37. Laudan, L. (1995). Damn the consequenences. In Proceedings of American philosophical association, 69:2, Presidential Address. Pacific Division (pp. 27-34).
  38. Laudan, L. (1990). Demystifying underdetermination. In C. Wade Savage (Ed.), Scientific theories (Vol. XIV, pp. 267-297). Minneapolis: University of Minnesota Press.
  39. Laudan, L., & Leplin, J. (1991). Empirical equivalence and underdetermination. Journal of Philosophy, 88, 449-472.
  40. Leplin, J. (1997). A novel defense of scientific realism. New York: Oxford University Press.
  41. Li, M., & Vitanyi, P. (2008). An introduction to Kolmogorov complexity and its applications. Berlin: Springer.
  42. Mayo, D. (1996). Error: The growth of experimental knowledge. Chicago: University of Chicago Press.
  43. Norton, J. (2008). Must evidence underdetermine theory? In M. Carrier, D. Howard, & J. Kourany (Eds.), The challenge of the social and the pressure of practice: Science and values revisited (pp. 17-44). Pittsburgh: University of Pittsburgh Press.
  44. Park, T., & Cassella, G. (2008). The Bayesian Lasso. In Journal of the American Statistical Association, 103, 681-686.
  45. Press, S., & Tanur, J. (2001). The subjectivity of scientists and the Bayesian statistical approach. New York: Wiley.
  46. Quine, W.V. (1953). Two Dogmas of Empiricism. In from a logical point of view (pp. 20-46). Cambridge, Mass: Harvard University Press.
  47. Quine, W. (1975). Empirically equivalent systems of the world. Erkenntniss, 9, 313-328.
  48. Raftery, A. (1995). Bayesian model selection in social research. In P. V. Marsden (Ed.), Sociological method- ology (with Discussion) (pp. 111-195). Cambridge, MA: Blackwell.
  49. Robert, C. (1994). The Bayesian choice. New York: Springer.
  50. Royall, R. (1997). Statistical evidence: A likelihood paradigm. New York: Chapman Hall.
  51. Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461-464.
  52. Skyrms, B. (1984). Pragmatism and empiricism. New Heaven: Yale University Press.
  53. Sober, E. (2002a). Comments on Prasanta Bandyopadhyay's "Simplicity: Our View, Their View. Central Division, Chicago: APA.
  54. Sober, E. (2002b). Bayesianism-Its Scope and Limits. In Swinburne (2002).
  55. Sober, E. (1974). Simplicity. England: Oxford University Press.
  56. Sober, E. (1995). From a biological point of view. England: Cambridge University Press.
  57. Swinburne, R. (Ed.). (2002). Bayes's theorem. Oxford: Oxford University Press.
  58. Van Fraassen, B. (1980). The scientific image. Oxford: Oxford University Press.
  59. Van Fraassen, B. (1989). Laws and symmetry. Oxford: Oxford University Press.
  60. Van Fraassen, B. (1991). Quantum mechanics: An empiricist view. Oxford: Oxford University Press.
  61. Weirich, P. (2011). The Bayesian decision-theoretic approach to statistics. In P. S. Bandyopadhyay & M. R. Forster (Eds.), Handbook of philosophy of statistics (pp. 233-261). Amsterdam: Elsevier.