Divisibility of the central binomial coefficient $\binom{2n}{n}$
2019, arXiv (Cornell University)
https://doi.org/10.48550/ARXIV.1909.03903Abstract
We show that for every fixed ℓ ∈ N, the set of n with n ℓ | 2n n has a positive asymptotic density c ℓ , and we give an asymptotic formula for c ℓ as ℓ → ∞. We also show that #{n x, (n, 2n n) = 1} ∼ cx/ log x for some constant c. We use results about the anatomy of integers and tools from Fourier analysis. One novelty is a method to capture the effect of large prime factors of integers in general sequences.
References (16)
- P. Billingsly, On the distribution of large prime divisors, Collection of articles dedicated to the memory of Alfréd Rényi, I. Period. Math. Hungar. 2 (1972), 283-289.
- H. Davenport, Multiplicative number theory, 3rd ed., Graduate Texts in Mathematics vol. 74, Springer-Verlag, New York, 2000.
- P. Donnelly and G. Grimmett, On the asymptotic distribution of large prime factors, J. London Math. Soc. (2) 47 (1993), 395-404.
- P. Erdős, R. L. Graham, I. Z. Ruzsa, E. G. Straus, On the prime factors of 2n n , Collection of articles in honor of Derrick Henry Lehmer on the occasion of his seventieth birthday, Math. Comp. 29 (1975) 83-92.
- S. W. Graham and G. Kolesnik, Van der Corput's method of exponential sums, London Math. Soc. Lecture Note, vol. 126, Cambridge University Press, 1991.
- A. Granville, Arithmetic properties of binomial coefficients. I. Binomial coefficients modulo prime powers, Organic Mathe- matics (Burnaby, BC, 1995), 253-276, CMS Conf. Proc., 20, Amer. Math. Soc., Providence, RI, 1997.
- H. Halberstam and H.-E. Richert, Sieve Methods, Academic Press, London, 1974.
- R. R. Hall, G. Tenenbaum, Divisors, Cambridge Tracts in mathematics vol. 90, 1988.
- K. Handa, The two-parameter Poisson-Dirichlet process, Bernoulli 15 (2009), 1082-1116.
- E. E. Kummer, Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen, J. Reine angew. Math. 44 (1852), 93- 146.
- H. L. Montgomery, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, CBMS Regional Conference Series in Mathematics vol. 84, Amer. Math. Soc., 1994.
- N. A. Sloane, The on-line encyclopedia of integer sequences. http://oeis.org
- C. Pomerance, Divisors of the middle binomial coefficient, Amer. Math. Monthly 122 (2015), 636-644.
- C. Sanna, Central binomial coefficients divisible by or coprime to their indices. Int. J. Number Theory 14 (2018), no. 4, 1135-1141.
- G. Tenenbaum, A rate estimate in Billingsley's theorem for the size distribution of large prime factors, Quart. J. Math. Oxford 51 (2000), no. 3, 385-403.
- G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, 3rd ed., Amer. Math Soc., 2015