Academia.eduAcademia.edu

Outline

Divisibility of the central binomial coefficient $\binom{2n}{n}$

2019, arXiv (Cornell University)

https://doi.org/10.48550/ARXIV.1909.03903

Abstract

We show that for every fixed ℓ ∈ N, the set of n with n ℓ | 2n n has a positive asymptotic density c ℓ , and we give an asymptotic formula for c ℓ as ℓ → ∞. We also show that #{n x, (n, 2n n) = 1} ∼ cx/ log x for some constant c. We use results about the anatomy of integers and tools from Fourier analysis. One novelty is a method to capture the effect of large prime factors of integers in general sequences.

References (16)

  1. P. Billingsly, On the distribution of large prime divisors, Collection of articles dedicated to the memory of Alfréd Rényi, I. Period. Math. Hungar. 2 (1972), 283-289.
  2. H. Davenport, Multiplicative number theory, 3rd ed., Graduate Texts in Mathematics vol. 74, Springer-Verlag, New York, 2000.
  3. P. Donnelly and G. Grimmett, On the asymptotic distribution of large prime factors, J. London Math. Soc. (2) 47 (1993), 395-404.
  4. P. Erdős, R. L. Graham, I. Z. Ruzsa, E. G. Straus, On the prime factors of 2n n , Collection of articles in honor of Derrick Henry Lehmer on the occasion of his seventieth birthday, Math. Comp. 29 (1975) 83-92.
  5. S. W. Graham and G. Kolesnik, Van der Corput's method of exponential sums, London Math. Soc. Lecture Note, vol. 126, Cambridge University Press, 1991.
  6. A. Granville, Arithmetic properties of binomial coefficients. I. Binomial coefficients modulo prime powers, Organic Mathe- matics (Burnaby, BC, 1995), 253-276, CMS Conf. Proc., 20, Amer. Math. Soc., Providence, RI, 1997.
  7. H. Halberstam and H.-E. Richert, Sieve Methods, Academic Press, London, 1974.
  8. R. R. Hall, G. Tenenbaum, Divisors, Cambridge Tracts in mathematics vol. 90, 1988.
  9. K. Handa, The two-parameter Poisson-Dirichlet process, Bernoulli 15 (2009), 1082-1116.
  10. E. E. Kummer, Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen, J. Reine angew. Math. 44 (1852), 93- 146.
  11. H. L. Montgomery, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, CBMS Regional Conference Series in Mathematics vol. 84, Amer. Math. Soc., 1994.
  12. N. A. Sloane, The on-line encyclopedia of integer sequences. http://oeis.org
  13. C. Pomerance, Divisors of the middle binomial coefficient, Amer. Math. Monthly 122 (2015), 636-644.
  14. C. Sanna, Central binomial coefficients divisible by or coprime to their indices. Int. J. Number Theory 14 (2018), no. 4, 1135-1141.
  15. G. Tenenbaum, A rate estimate in Billingsley's theorem for the size distribution of large prime factors, Quart. J. Math. Oxford 51 (2000), no. 3, 385-403.
  16. G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, 3rd ed., Amer. Math Soc., 2015