Academia.eduAcademia.edu

Outline

Binomial-coefficient multiples of irrationals

1998, Monatshefte f�r Mathematik

https://doi.org/10.1007/BF01305342

Abstract

Denote by x a random infinite path in the graph of Pascal's triangle (left and right turns are selected independently with fixed probabilities) and by d n (x) the binomial coefficient at the n'th level along the path x. Then for a dense G δ set of θ in the unit interval, {d n (x)θ} is almost surely dense but not uniformly distributed modulo 1.

References (14)

  1. H. Furstenberg, Strict ergodicity and transformations of the torus, Amer. J. Math. 83 (1961), 573-601.
  2. R. K. Guy, Unsolved Problems in Number Theory, Second Edition, Springer-Verlag, New York, 1994, p. 88.
  3. F. J. Hahn, On affine transformations of compact abelian groups, Amer. J. Math. 85 (1963), 428-446.
  4. E. E. Kummer, Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen, J. für Math. 44 (1852), 115-116.
  5. E. Lucas, Théorie des fonctions numériques simplement périodiques, Amer. J. Math. 1 (1878), 184-240.
  6. K. Petersen and K. Schmidt, Symmetric Gibbs measures (to appear).
  7. A. G. Postnikov, Ergodic problems in the theory of congruences and of Diophantine approxi- mations, Proc. Steklov Inst. Math. 82 (1966), 3-112.
  8. A. Rényi, On mixing sequences of sets, Acad. Sci. Hung. 9 (1958), 215-228.
  9. A. M. Vershik, Description of invariant measures for actions of some infinite groups, Dokl. Akad. Nauk SSSR 218 (1974), 749-752; Soviet Math. Dokl. 15 (1974), 1396-1400.
  10. Uniform algebraic approximation of shift and multiplication operators, Dokl. Akad.
  11. Nauk SSSR 259 (1981), 526-529; Soviet Math. Dokl. 24 (1981), 97-100.
  12. A. M. Vershik and A. N. Livshitz, Adic models of ergodic transformations, spectral theory, substitutions, and related topics, Adv. Soviet Math. 9 (1992), 185-204.
  13. H. Weyl, Über ein Problem aus dem Gebiete der diophantischen Approximationen, Nach. Ges. Wiss. Göttingen (1914), 234-244.
  14. H. Weyl, Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), 313-352.