Dilation-Optimal Edge Deletion in Polygonal Cycles
2007, Springer eBooks
https://doi.org/10.1007/978-3-540-77120-3_10Abstract
Let C be a polygonal cycle on n vertices in the plane. A randomized algorithm is presented which computes in O(n log 3 n) expected time, the edge of C whose removal results in a polygonal path of smallest possible dilation. It is also shown that the edge whose removal gives a polygonal path of largest possible dilation can be computed in O(n log n) time. If C is a convex polygon, the running time for the latter problem becomes O(n). Finally, it is shown that for each edge e of C, a (1 −)approximation to the dilation of the path C \ {e} can be computed in O(n log n) total time.
References (12)
- Agarwal, P.K., Klein, R., Knauer, C., Sharir, M.: Computing the detour of polyg- onal curves. Technical Report B 02-03, Fachbereich Mathematik und Informatik, Freie Universität Berlin (2002)
- Callahan, P.B., Kosaraju, S.R.: A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields. Journal of the ACM 42, 67-90 (1995)
- Clarkson, K.L., Shor, P.W.: Algorithms for diametral pairs and convex hulls that are optimal, randomized, and incremental. In: SCG 1988: Proceedings of the fourth annual symposium on Computational geometry, pp. 12-17. ACM Press, New York (1988)
- Fortune, S.J.: A sweepline algorithm for Voronoi diagrams. Algorithmica 2, 153- 174 (1987)
- Fredman, M.L., Komlos, J., Szemeredi, E.: Storing a sparse table with O(1) worst case access time. Journal of the ACM 31, 538-544 (1984)
- Kirkpatrick, D.G.: Optimal search in planar subdivisions. SIAM Journal on Com- puting 12, 28-35 (1983)
- Langerman, S., Morin, P., Soss, M.: Computing the maximum detour and spanning ratio of planar paths, trees and cycles. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 250-261. Springer, Heidelberg (2002)
- Lee, D.T., Preparata, F.P.: The all nearest-neighbor problem for convex polygons. Information Processing Letters 7, 189-192 (1978)
- Lenhof, H.P., Smid, M.: Sequential and parallel algorithms for the k closest pairs problem. International Journal of Computational Geometry & Applications 5, 273-288 (1995)
- Narasimhan, G., Smid, M.: Approximating the stretch factor of Euclidean graphs. SIAM Journal on Computing 30, 978-989 (2000)
- Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University Press, Cambridge (2007)
- Smid, M.: Closest-point problems in computational geometry. In: Sack, J.-R., Ur- rutia, J. (eds.) Handbook of Computational Geometry, pp. 877-935. Elsevier Sci- ence, Amsterdam (2000)