Approximating Polygons and Subdivisions with Minimum-Link Paths
1993, International Journal of Computational Geometry & Applications
https://doi.org/10.1142/S0218195993000257Abstract
We study several variations on one basic approach to the task of simplifying a plane polygon or subdivision: Fatten the given object and construct an approximation inside the fattened region. We investigate fattening by convolving the segments or vertices with disks and attempt to approximate objects with the minimum number of line segments, or with near the minimum, by using efficient greedy algorithms. We give some variants that have linear or O(n log n) algorithms approximating polygonal chains of n segments. We also show that approximating subdivisions and approximating with chains with. no self-intersections are NP-hard.
References (42)
- P. K. Agarwal, M. Sharir, and P. Shor. Sharp upper and lower bounds on the length of general Davenport-Schinzel sequences. Journal of Combinatorial Theory, Series A, 52:228{274, 1989.
- H. Alt, J. Bl omer, M. Godau, and H. Wagener. Approximation of convex polygons. In Seventeenth International Colloquium on Automata, Languages and Program- ming, number 443 in Lecture Notes in Computer Science, pages 703{716. Springer- Verlag, 1990.
- H. Alt and M. Godau. Measuring the resemblance of polygonal curves. In Pro- ceedings of the Eighth Annual ACM Symposium on Computational Geometry, pages 102{109, 1992.
- M. A. Armstrong. Basic Topology. McGraw-Hill, London, 1979.
- R. Bellman. On the approximation of curves by line segments using dynamic pro- gramming. Communications of the Association for Computing Machinery, 4:284, 1961.
- M. Blakemore. Generalisation and error in spatial data bases. Cartographica, 21:131{139, 1984.
- B. Butten eld. Treatment of the cartographic line. Cartographica, 22:1{26, 1985.
- D. Dobkin, J. Hershberger, D. Kirkpatrick, and S. Suri. Implicitly searching convo- lutions and computing depth of collision. In Algorithms: International Symposium Sigal 90, number 450 in Lecture Notes in Computer Science, pages 165{180, 1990.
- D. H. Douglas and T. K. Peucker. Algorithms for the reduction of the number of points required to represent a line or its caricature. The Canadian Cartographer, 10(2):112{122, 1973.
- P. Egyed and R. Wenger. Ordered stabbing of pairwise disjoint convex sets in linear time. Discrete Applied Mathematics, 31:133{140, 1991.
- M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, New York, 1979.
- M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simpli ed NP-complete graph problems. Theoretical Computer Science, 1:237{267, 1976.
- S. K. Ghosh. Computing the visibility polygon from a convex set and related prob- lems. Journal of Algorithms, 12:75{95, 1991.
- M. Godau. Die Fr echet-Metrik f ur Polygonz uge|Algorithmen zur Abstandsmessung und Approximation. PhD thesis, Fachbereich Mathematik, FU Berlin, 1991.
- R. Graham. An e cient algorithm for determining the convex hull of a nite planar set. Information Processing Letters, 1:132{133, 1972.
- L. Guibas, L. Ramshaw, and J. Stol . A kinetic framework for computational geometry. In Proceedings of the 24th IEEE Symposium on Foundations of Computer Science, pages 100{111, 1983.
- L. J. Guibas, J. E. Hershberger, J. S. B. Mitchell, and J. S. Snoeyink. Minimum link approximation of polygons and subdivisions. In W. L. Hsu and R. C. T. Lee, editors, ISA `91 Algorithms, number 557 in Lecture Notes in Computer Science, pages 151{162. Springer-Verlag, 1991.
- L. J. Guibas and R. Seidel. Computing convolutions by reciprocal search. Discrete & Computational Geometry, 2:175{193, 1987.
- S. L. Hakimi and E. F. Schmeichel. Fitting polygonal functions to a set of points in the plane. CVGIP: Graphical Models and Image Processing, 53(2):132{136, 1991.
- J. Hershberger and J. Snoeyink. Speeding up the Douglas-Peucker line simpli ca- tion algorithm. In Proceedings of the 5th International Symposium on Spatial Data Handling, pages 134{143. IGU Commision on GIS, 1992.
- J. Hershberger and J. Snoeyink. Computing minimum length paths of a given homotopy class. Computational Geometry: Theory and Applications, 1993.
- H. Imai and M. Iri. Computational-geometric methods for polygonal approximations of a curve. Computer Vision, Graphics, and Image Processing, 36:31{41, 1986.
- H. Imai and M. Iri. An optimal algorithm for approximating a piecewise linear function. Journal of Information Processing, 9(3):159{162, 1986.
- H. Imai and M. Iri. Polygonal approximations of a curve|formulations and al- gorithms. In G. T. Toussaint, editor, Computational Morphology. North Holland, 1988.
- K. Kedem, R. Livne, J. Pach, and M. Sharir. On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles. Discrete & Compu- tational Geometry, 1:59{71, 1986.
- D. Leven and M. Sharir. Planning a purely translational motion for a convex polyg- onal object in two dimensional space using generalized Voronoi diagrams. Discrete & Computational Geometry, 2:9{31, 1987.
- D. Litchenstein. Planar formulae and their uses. SIAM Journal on Computing, 11(2):329{343, 1982.
- R. B. McMaster. A statistical analysis of mathematical measures for linear simpli- cation. The American Cartographer, 13:103{116, 1986.
- R. B. McMaster. Automated line generalization. Cartographica, 24(2):74{111, 1987.
- R. B. McMaster. The integration of simpli cation and smoothing algorithms in line generalization. Cartographica, 26(1):101{121, 1989.
- A. Melkman and J. O'Rourke. On polygonal chain approximation. In G. T. Tous- saint, editor, Computational Morphology. North Holland, 1988.
- J. R. Munkres. Topology: A First Course. Prentice-Hall, Englewood Cli s, N.J., 1975.
- B. K. Natarajan and J. Ruppert. On sparse approximations of curves and functions. Manuscript, 1991.
- J. O'Rourke. An on-line algorithm for tting straight lines between data ranges. Communications of the Association for Computing Machinery, 24(9):574{578, Sept. 1981.
- J. Perkal. On the length of empirical curves. In Discussion Paper 10, Michigan Inter-University Community of Mathematical Geographers, University of Michigan, Ann Arbor, 1966.
- F. P. Preparata. An optimal real time algorithm for planar convex hulls. Commu- nications of the Association for Computing Machinery, 22(7):402{405, 1979.
- U. Ramer. An iterative procedure for the polygonal approximation of plane curves. Computer Vision, Graphics, and Image Processing, 1:244{256, 1972.
- A. Rosenfeld. Axial representation of shape. Computer Vision, Graphics, and Image Processing, 33:156{173, 1986.
- S. Suri. A linear time algorithm for minimum link paths inside a simple polygon. Computer Vision, Graphics, and Image Processing, 35:99{110, 1986.
- G. Toussaint. On the complexity of approximating polygonal curves in the plane. In Proc. IASTED, International Symposium on Robotics and Automation, Lugano, Switzerland, 1985.
- E. R. White. Assessment of line-generalization algorithms using characteristic points. The American Cartographer, 12(1):17{27, 1985.
- C. K. Yap. An O(n log n) algorithm for the Voronoi diagram of a set of simple curve segments. Discrete & Computational Geometry, 2:365{393, 1987.