Academia.eduAcademia.edu

Outline

On Blaschke products associated with n-widths

2004, Journal of Approximation Theory

https://doi.org/10.1016/J.JAT.2003.11.009

Abstract

Let E be a closed subset of the open unit disk G ¼ fz : jzjo1g; and let m be a positive Borel measure with support supp m ¼ E: Denote by A p the restriction on E of the closed unit ball of the Hardy space H p ðGÞ; 1pppN: In this paper we investigate orthogonality properties of the extremal functions associated with the Kolmogorov, Gelfand, and linear n-widths of A p in L q ðm; EÞ; 1pqoN; qpp:

References (11)

  1. J.-E. Andersson, Best rational approximation to Markov functions, J. Approx. Theory 76 (1994) 219-232.
  2. L. Baratchart, V.A. Prokhorov, E.B. Saff, Best meromorphic approximation of Markov functions on the unit circle, Found. Comput. Math. 1 (2001) 385-416.
  3. L. Baratchart, V.A. Prokhorov, E.B. Saff, Asymptotics for minimal Blaschke products and best L 1 meromorphic approximants of Markov functions, Comput. Methods Function Theory 1 (2001) 501-520.
  4. J.M. Danskin, The Theory of Max-Min, Econometrics and Operations Research, Springer, Berlin, 1967.
  5. S.D. Fisher, Function Theory on Planar Domains, Wiley, New York, 1983.
  6. S.D. Fisher, Widths and optimal sampling in spaces of analytic functions, Constr. Approx. 12 (1996) 463-480.
  7. S.D. Fisher, M.I. Stessin, The n-width of the unit ball of H q ; J. Approx. Theory 67 (1991) 347-356.
  8. S.D. Fisher, M.I. Stessin, Corrigendum: the n-width of the unit ball of H q ; J. Approx. Theory 79 (1994) 167-168.
  9. John B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.
  10. A. Pinkus, N-widths in Approximation Theory, Springer, New York, 1985.
  11. E.B. Saff, V. Totik, Logarithmic Potentials with External Fields, Springer, Heidelberg, 1997.