On Blaschke products associated with n-widths
2004, Journal of Approximation Theory
https://doi.org/10.1016/J.JAT.2003.11.009Abstract
Let E be a closed subset of the open unit disk G ¼ fz : jzjo1g; and let m be a positive Borel measure with support supp m ¼ E: Denote by A p the restriction on E of the closed unit ball of the Hardy space H p ðGÞ; 1pppN: In this paper we investigate orthogonality properties of the extremal functions associated with the Kolmogorov, Gelfand, and linear n-widths of A p in L q ðm; EÞ; 1pqoN; qpp:
References (11)
- J.-E. Andersson, Best rational approximation to Markov functions, J. Approx. Theory 76 (1994) 219-232.
- L. Baratchart, V.A. Prokhorov, E.B. Saff, Best meromorphic approximation of Markov functions on the unit circle, Found. Comput. Math. 1 (2001) 385-416.
- L. Baratchart, V.A. Prokhorov, E.B. Saff, Asymptotics for minimal Blaschke products and best L 1 meromorphic approximants of Markov functions, Comput. Methods Function Theory 1 (2001) 501-520.
- J.M. Danskin, The Theory of Max-Min, Econometrics and Operations Research, Springer, Berlin, 1967.
- S.D. Fisher, Function Theory on Planar Domains, Wiley, New York, 1983.
- S.D. Fisher, Widths and optimal sampling in spaces of analytic functions, Constr. Approx. 12 (1996) 463-480.
- S.D. Fisher, M.I. Stessin, The n-width of the unit ball of H q ; J. Approx. Theory 67 (1991) 347-356.
- S.D. Fisher, M.I. Stessin, Corrigendum: the n-width of the unit ball of H q ; J. Approx. Theory 79 (1994) 167-168.
- John B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.
- A. Pinkus, N-widths in Approximation Theory, Springer, New York, 1985.
- E.B. Saff, V. Totik, Logarithmic Potentials with External Fields, Springer, Heidelberg, 1997.