Academia.eduAcademia.edu

Outline

On weighted estimates for Stein's maximal function

1996, Bulletin of the Australian Mathematical Society

https://doi.org/10.1017/S0004972700015057

Abstract

Let φ denote the normalised surface measure on the unit sphere Sn−1. We shall be interested in the weighted Lp estimate for Stein's maximal function Mφf, namelywhere w is an Ap weight, especially for 1 < p ≤ 2. Using the Mellin transformation approach, we prove that the estimate holds for every weight wδ where w ∈ Ap and 0 ≤ δ < (p(n − 1) − n)/(n(p − 1)), for n ≥ 3 and n/(n − 1) < p ≤ 2.

References (6)

  1. J. Bourgain, 'Averages in the plane over convex curves and maximal operators', J. Analyse Math. 47 (1986), 69-85.
  2. M. Cowling and G. Mauceri, 'On maximal functions', Rend. Sem. Mat. Fis. Milano 49 (1979), 79-87.
  3. J. Garcia-Cuerva and J.L. Rubio de Francia, Weighted norm inequalities and related topics (North-Holland, Amsterdam, 1985).
  4. E.M. Stein, 'Maximal functions: spherical means', Proc. Nat. Acad. Sci. U.S.A. 73 (1976), 2174-2175.
  5. E.M. Stein and G. Weiss, 'Interpolation of operators with change of measures', Trans. Amer. Math. Soc. 87 (1958), 159-172.
  6. D.K. Watson, 'Weighted estimates for singular integrals via Fourier transform estimates', Duke Math. J. 60 (1990), 389-399.