Academia.eduAcademia.edu

Outline

Approximation in Hardy spaces

1984, Annali di Matematica Pura ed Applicata

https://doi.org/10.1007/BF01789395

Abstract
sparkles

AI

Approximation in Hardy spaces explores the application of maximal characterization methods to Hardy spaces, emphasizing distinctions from classical approaches that utilize complex variables. Key results include the extension of Jackson-type theorems and analysis of functional properties within Schwartz class functions, leading to significant insights into approximation capabilities and regularity within these spaces.

References (8)

  1. C. FEFFERMAN -E. !V[. STEIN, H ~ spaces o] severa~ variables, Acta Math., 189 (1972), pp. 137-193.
  2. S. M. NIKOL'SKIj, Approximation o] ]unotions o/ several variables and imbedding theorems, Nauka, Moscow, 1969; English ~ransl., Springer Verlag, Berlin-Heidelberg-New York, 1975.
  3. E. M. S~I~, Singular integrals and di/]erentlability properties o] ]unvtion8, Princeton Univ. Press, Princeton, 1970.
  4. E. A. STOROZl~NKO, Approximation o] funetions o/vlass H ~, 0 < p~< 1, Mat. Sb., 105 (147) (1978), pp. 601-621; English transl, in Math. U.S.S.R. Sb., 34 (1978), pp. 527-545. :LE01~AI~D0 COLZA:NI: Approximation in Hardy spaces
  5. E. A. STO~0ZENKO, Theorems o] Jaekson type in H ~, 0 ~ p ~ 1, Izv. Akad. Nauk U.S.S.R. Set. Mat., 44 (1980), lop. 946-962; English transl, in Math. U.S.S.R. Izv., 17 (1981), pp. 203-218.
  6. M. H. TAI]3LESO~-, On the theory o] Lipschitz spaces o] distributions in euclidean n.spaee, I, J. Math. Mee., 13 (1964), pp. 407-480; II (ibid), 14 (1965), pp. 821-840; III (ibid), 15 (1966), pp. 973-981.
  7. M.H. TAIBLES0N -G. WEISS, The ~nolecular eharacterization o] certain Hardy spaees, Ast4risque, 77 (1980), Soe. Mat. de France, pp. 67-149.
  8. A. ZYG~UND, Trigonometric series, See. Ed., Cambridge Univ. Press, C~mbridge, 1968.