Academia.eduAcademia.edu

Outline

Flat functors and free exact categories

1996, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics

https://doi.org/10.1017/S1446788700037575

Abstract

Let C be a small category with weak finite limits, and let Flat(C) be the category of flat functors from C to the category of small sets. We prove that the free exact completion of C is the category of set-valued functors of Flat (C) which preserve small products and filtered colimits. In case C has finite limits, this gives A. Carboni and R. C. Magno's result on the free exact completion of a small category with finite limits.

References (14)

  1. J. Adamek and J. Rosicky, 'On weakly locally presentable categories', Cahiers Topologie Geom. Diff. Categoriques, 35 (1994), 197-186. https://doi.org/10.1017/S1446788700037575 Published online by Cambridge University Press HongdeHu
  2. M. Ban, 'Exact categories', in: Lecture Notes in Math. 236 (Springer, Berlin, 1971) pp. 1-120.
  3. 'Representations of categories', J. Pure Appl. Algebra 41(1986), 113-137.
  4. A. Carboni and R. C. Magno, 'The free exact category on a left exact one', J. Austral. Math. Soc. (Ser.A) 33 (1982), 295-301.
  5. A. Carboni, 'Some free constructions in realizability and proof theory', preprint.
  6. P. Freyd, 'Representations in abelian categories', in: Proceedings of the conference on categorical algebra, La Jolla, 1965 (Springer, Berlin, 1966) pp. 95-120.
  7. P. Gabriel and F. Ulmer, Lokal prdsentierbare Kategorien, Lecture Notes in Math. 221 (Springer, Berlin, 1971).
  8. H.Hu, 'Dualities for accessible categories', in: Can. Math. Soc. Conference Proceedings 13(Amer. Math. Soc, Providence, 1992) pp. 211-242.
  9. G. M. Kelly, Basic concepts of enriched category theory (Cambridge University Press, 1982).
  10. S. Mac Lane, Categories for the working mathematician (Springer, Berlin, 1971).
  11. M. Makkai, 'A theorem on Barr-exact categories, with an infinitary generalization', Ann. Pure Appl. Logic 47 (1990), 225-268.
  12. M. Makkai and R. Par6, Accessible categories: the foundations of categorical model theory, Contemporary Math. 104 (Amer. Math. Soc., Providence, 1990).
  13. R. Street, 'Fibrations in bicategories', Cahiers Topologie Geom. Diff. Categoriques 21 (1980), 111-160.
  14. De"partement de Mathematiques University du Quebec a Montreal Montreal, QC Canada H3C 3P8 e-mail: hu@math.uqam.ca