Academia.eduAcademia.edu

Outline

On the notion of flat 2-functors

Abstract

In this paper we develop the 2-dimensional theory of flat functors. We define a 2-functor A

References (30)

  1. Artin M., Grothendieck A., Verdier J., SGA 4, Ch IV, (1963-64), Springer Lecture Notes in Mathematics 269 (1972).
  2. Bird G.J., Limits in 2-categories of locally-presented categories, Ph.D. Thesis, 1984.
  3. Bird G.J., Kelly G.M, Power A.J., Flexible Limits for 2-Categories, J. Pure Appl. Alg. 61 (1989).
  4. Buckley M., Fibred 2-categories and bicategories, arXiv:1212.6283 (2012).
  5. Canevali N., 2-filtered bicolimits and finite weighted bilimits commute in Cat, degree thesis, http://cms.dm.uba.ar/academico/carreras/licenciatura/tesis/2016.
  6. Data M. I., Una construcción de bicolímites 2-filtrantes de categorías, degree thesis, http://cms.dm.uba.ar/academico/carreras/licenciatura/tesis/2014.
  7. Descotte M.E., Una teoría de 2-pro-objetos, una teoría de 2-categorías de 2-modelos y la estructura de 2-modelos para 2-Pro(C), Ph.D. thesis (2015).
  8. Descotte M.E., Dubuc E.J., A theory of 2-pro-objects, Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 55 number 1 (2014).
  9. Descotte M.E., Dubuc E.J., Szyld M., A construction of certain weak colimits and an exactness property of the 2-category of categories, arXiv:1610.02453 (2016).
  10. Dubuc E. J., Kan extensions in Enriched Category Theory, Lecture Notes in Mathemat- ics, Springer Lecture Notes in Mathematics 145 (1970).
  11. Dubuc E. J., Street R., A construction of 2-filtered bicolimits of categories, Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 47 number 2 (2006).
  12. Fiore T. M., Pseudo Limits, Biadjoints, and Pseudo Algebras: Categorical Foundations of Conformal Field Theory, Mem. Amer. Math. Soc. 182 , no. 860 (2006).
  13. Gabriel P., Zisman M., Calculus of fractions and homotopy theory, Springer (1967).
  14. Gray J. W., Formal category theory: adjointness for 2-categories, Springer Lecture Notes in Mathematics 391 (1974).
  15. Grothendieck A., SGA1 (1960-61), Springer Lecture Notes in Mathematics 224 (1971).
  16. Kelly G. M., Basic concepts of enriched category theory, London Mathematical Society Lecture Note Series 64, Cambridge Univ. Press, New York (1982).
  17. Kelly G. M., Elementary observations on 2-Categorical limits, Bull. Austral. Math. Soc. Vol. 39 (1989).
  18. Kelly G. M., Structures defined by finite limits in the enriched context I, Cahiers de Topologie et Géométrie Différentielle Catégoriques 23 (1982).
  19. Kelly G. M., Street R., Review of the elements of 2-categories, Springer Lecture Notes in Mathematics 420 (1974).
  20. Kennison J., The fundamental localic groupoid of a topos, J. Pure Appl. Alg. 77 (1992).
  21. Lack S., Limits for Lax Morphisms, Applied Categorical Structures 13, Issue 3 (2005).
  22. Lucatelli Nunes F., On Biadjoint Triangles, Theory and Applications of Categories, Vol. 31, No. 9 (2016).
  23. Mac Lane S., Categories for the Working Mathematician, Springer-Verlag New York, Springer (1971).
  24. Mac Lane S., Moerdijk I, Sheaves in Geometry and Logic: a First Introduction to Topos Theory, Springer, New York (1992).
  25. Power A.J., A General Coherence Result, J. Pure Appl. Alg. 57 (1989).
  26. Pronk D. A., Etendues and stacks as bicategories of fractions, Compositio Mathematica, Tome 102, N. 3 (1996).
  27. Street R., Correction to Fibrations in bicategories, Cahiers de topologie et géométrie différentielle catégoriques, Tome 28 N. 1 (1987).
  28. Street R., Fibrations in bicategories, Cahiers de topologie et géométrie différentielle catégoriques, Tome 21 N. 2 (1980).
  29. Street R., Limits indexed by category-valued 2-functors J. Pure Appl. Alg. 8 (1976).
  30. Weber M., Algebraic Kan extensions along morphisms of internal algebra classifiers, arXiv:1511.04911v3 (2015).