On the notion of flat 2-functors
Abstract
In this paper we develop the 2-dimensional theory of flat functors. We define a 2-functor A
References (30)
- Artin M., Grothendieck A., Verdier J., SGA 4, Ch IV, (1963-64), Springer Lecture Notes in Mathematics 269 (1972).
- Bird G.J., Limits in 2-categories of locally-presented categories, Ph.D. Thesis, 1984.
- Bird G.J., Kelly G.M, Power A.J., Flexible Limits for 2-Categories, J. Pure Appl. Alg. 61 (1989).
- Buckley M., Fibred 2-categories and bicategories, arXiv:1212.6283 (2012).
- Canevali N., 2-filtered bicolimits and finite weighted bilimits commute in Cat, degree thesis, http://cms.dm.uba.ar/academico/carreras/licenciatura/tesis/2016.
- Data M. I., Una construcción de bicolímites 2-filtrantes de categorías, degree thesis, http://cms.dm.uba.ar/academico/carreras/licenciatura/tesis/2014.
- Descotte M.E., Una teoría de 2-pro-objetos, una teoría de 2-categorías de 2-modelos y la estructura de 2-modelos para 2-Pro(C), Ph.D. thesis (2015).
- Descotte M.E., Dubuc E.J., A theory of 2-pro-objects, Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 55 number 1 (2014).
- Descotte M.E., Dubuc E.J., Szyld M., A construction of certain weak colimits and an exactness property of the 2-category of categories, arXiv:1610.02453 (2016).
- Dubuc E. J., Kan extensions in Enriched Category Theory, Lecture Notes in Mathemat- ics, Springer Lecture Notes in Mathematics 145 (1970).
- Dubuc E. J., Street R., A construction of 2-filtered bicolimits of categories, Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 47 number 2 (2006).
- Fiore T. M., Pseudo Limits, Biadjoints, and Pseudo Algebras: Categorical Foundations of Conformal Field Theory, Mem. Amer. Math. Soc. 182 , no. 860 (2006).
- Gabriel P., Zisman M., Calculus of fractions and homotopy theory, Springer (1967).
- Gray J. W., Formal category theory: adjointness for 2-categories, Springer Lecture Notes in Mathematics 391 (1974).
- Grothendieck A., SGA1 (1960-61), Springer Lecture Notes in Mathematics 224 (1971).
- Kelly G. M., Basic concepts of enriched category theory, London Mathematical Society Lecture Note Series 64, Cambridge Univ. Press, New York (1982).
- Kelly G. M., Elementary observations on 2-Categorical limits, Bull. Austral. Math. Soc. Vol. 39 (1989).
- Kelly G. M., Structures defined by finite limits in the enriched context I, Cahiers de Topologie et Géométrie Différentielle Catégoriques 23 (1982).
- Kelly G. M., Street R., Review of the elements of 2-categories, Springer Lecture Notes in Mathematics 420 (1974).
- Kennison J., The fundamental localic groupoid of a topos, J. Pure Appl. Alg. 77 (1992).
- Lack S., Limits for Lax Morphisms, Applied Categorical Structures 13, Issue 3 (2005).
- Lucatelli Nunes F., On Biadjoint Triangles, Theory and Applications of Categories, Vol. 31, No. 9 (2016).
- Mac Lane S., Categories for the Working Mathematician, Springer-Verlag New York, Springer (1971).
- Mac Lane S., Moerdijk I, Sheaves in Geometry and Logic: a First Introduction to Topos Theory, Springer, New York (1992).
- Power A.J., A General Coherence Result, J. Pure Appl. Alg. 57 (1989).
- Pronk D. A., Etendues and stacks as bicategories of fractions, Compositio Mathematica, Tome 102, N. 3 (1996).
- Street R., Correction to Fibrations in bicategories, Cahiers de topologie et géométrie différentielle catégoriques, Tome 28 N. 1 (1987).
- Street R., Fibrations in bicategories, Cahiers de topologie et géométrie différentielle catégoriques, Tome 21 N. 2 (1980).
- Street R., Limits indexed by category-valued 2-functors J. Pure Appl. Alg. 8 (1976).
- Weber M., Algebraic Kan extensions along morphisms of internal algebra classifiers, arXiv:1511.04911v3 (2015).