Locally Compact Objects in Exact Categories
2007
Abstract
We identify two categories of locally compact objects on an exact category A. They correspond to the well-known constructions of the Beilinson category lim A and the Kato category k(A). We study their mutual relations and compare the two constructions. We prove that lim A is an exact category, which gives to this category a very convenient feature when dealing with K-theoretical invariants. It is natural therefore to consider the Beilinson category lim A as the most convenient candidate to the role of the category of locally compact objects over an exact category. We also show that the categories Ind_{aleph_0}(C), Pro_{aleph_0}(C) of countably indexed ind/pro-objects over any category C can be described as localizations of categories of diagrams over C.
References (21)
- M. Artin, B. Mazur, Étale Homotopy, Lecture Notes in Mathematics 100, Springer-Verlag (1969).
- S. Arkhipov, K. Kremnizer, 2-gerbes and 2-Tate spaces, arXiv:0708.4401 (2007).
- A. Beilinson, How to glue perverse sheaves in: K-Theory, Arithmetic and Geometry, Yu. I. Manin (Ed.), Lecture Notes in Mathematics 1289, pp. 42-51, Springer-Verlag, New York (1987).
- V. Drinfeld, Infinite-Dimensional Vector Bundles in Algebraic Geometry, in: The Unity of Mathematics, Birkhauser, Boston (2006).
- S. I Gelfand, Yu. I. Manin, Methods of Homological Algebra, Second Edition, Springer Monographs in Mathematics, Springer-Verlag, Berlin -Heidelberg (2003).
- A. Grothendieck et al., Séminaire de géometrie algébrique IV: Théorie des topos et coho- mologie étale des schemas. Lecture Notes in Mathematics 269, Springer-Verlag, Berlin - Heidelberg (1972).
- M. Kapranov, Double affine Hecke algebras and 2-dimensional local fields. J. Amer. Math. Soc. 14 (2001), no. 1, 239-262
- M. Kapranov, Infinite dimensional objects in algebra and geometry. Course given at Yale University, Fall 2004.
- M. Kapranov, E. Vasserot, Vertex algebras and the formal loop space. Publ. Math. Inst. Hautes Etudes Sci. 100 (2004), 209-269.
- M. Kashiwara, P. Schapira, Categories and Sheaves, Grundlehren der mathematischen Wissenschaften, Springer-Verlag, Berlin -Heidelberg (2006).
- K. Kato, Existence theorem for higher local fields, in: Geometry and Topology Monographs Vol 3: Invitation to higher local fields, I. Fesenko and M. Kurihara, (Eds.), pp. 165-195, University of Warwick (2000).
- B. Keller, Derived categories and their uses. Handbook of algebra, Vol. 1, 671-701, North- Holland, Amsterdam (1996).
- S. Lefschetz, Algebraic Topology (AMS Colloquium Publications 27), Amer. Math. Soc., New York (1942).
- S. Mac Lane, Categories for the Working Mathematician, Second Edition, GTM Springer Vol. 5, Springer-Verlag, New York (1998).
- D. Osipov, Adeles on n-Dimensional Schemes and categories C n Int. J. of Math. Vol. 18, no. 3 (2007), 269-279.
- D. V. Osipov, A. N. Parshin, Harmonic analysis on local fields and adelic spaces I, arXiv:0707.1766 (2007).
- L. Previdi, Sato Grassmannians for generalized Tate spaces, arXiv:1002.4863 (2010).
- D. Quillen, Higher Algebraic K-Theory I, in: Higher K-Theories, Lecture Notes in Mathe- matics 341, pp. 77-139, Springer-Verlag, New York (1973).
- L. Ribes, P. Zalesskii, Profinite Groups, Springer-Verlag, Berlin-Heidelberg (2000).
- F. Waldhausen, Algebraic K-Theory of Generalized Free Products, Part I, Annals of Math- ematics 2nd Ser., vol 108, No. 2 (Sept. 1978), pp. 135-204.
- C. Weibel, An Introduction to homological Algebra, Cambridge University Press (1995). Department Of Mathematics Yale University