Academia.eduAcademia.edu

Outline

Locally Compact Objects in Exact Categories

2007

Abstract

We identify two categories of locally compact objects on an exact category A. They correspond to the well-known constructions of the Beilinson category lim A and the Kato category k(A). We study their mutual relations and compare the two constructions. We prove that lim A is an exact category, which gives to this category a very convenient feature when dealing with K-theoretical invariants. It is natural therefore to consider the Beilinson category lim A as the most convenient candidate to the role of the category of locally compact objects over an exact category. We also show that the categories Ind_{aleph_0}(C), Pro_{aleph_0}(C) of countably indexed ind/pro-objects over any category C can be described as localizations of categories of diagrams over C.

References (21)

  1. M. Artin, B. Mazur, Étale Homotopy, Lecture Notes in Mathematics 100, Springer-Verlag (1969).
  2. S. Arkhipov, K. Kremnizer, 2-gerbes and 2-Tate spaces, arXiv:0708.4401 (2007).
  3. A. Beilinson, How to glue perverse sheaves in: K-Theory, Arithmetic and Geometry, Yu. I. Manin (Ed.), Lecture Notes in Mathematics 1289, pp. 42-51, Springer-Verlag, New York (1987).
  4. V. Drinfeld, Infinite-Dimensional Vector Bundles in Algebraic Geometry, in: The Unity of Mathematics, Birkhauser, Boston (2006).
  5. S. I Gelfand, Yu. I. Manin, Methods of Homological Algebra, Second Edition, Springer Monographs in Mathematics, Springer-Verlag, Berlin -Heidelberg (2003).
  6. A. Grothendieck et al., Séminaire de géometrie algébrique IV: Théorie des topos et coho- mologie étale des schemas. Lecture Notes in Mathematics 269, Springer-Verlag, Berlin - Heidelberg (1972).
  7. M. Kapranov, Double affine Hecke algebras and 2-dimensional local fields. J. Amer. Math. Soc. 14 (2001), no. 1, 239-262
  8. M. Kapranov, Infinite dimensional objects in algebra and geometry. Course given at Yale University, Fall 2004.
  9. M. Kapranov, E. Vasserot, Vertex algebras and the formal loop space. Publ. Math. Inst. Hautes Etudes Sci. 100 (2004), 209-269.
  10. M. Kashiwara, P. Schapira, Categories and Sheaves, Grundlehren der mathematischen Wissenschaften, Springer-Verlag, Berlin -Heidelberg (2006).
  11. K. Kato, Existence theorem for higher local fields, in: Geometry and Topology Monographs Vol 3: Invitation to higher local fields, I. Fesenko and M. Kurihara, (Eds.), pp. 165-195, University of Warwick (2000).
  12. B. Keller, Derived categories and their uses. Handbook of algebra, Vol. 1, 671-701, North- Holland, Amsterdam (1996).
  13. S. Lefschetz, Algebraic Topology (AMS Colloquium Publications 27), Amer. Math. Soc., New York (1942).
  14. S. Mac Lane, Categories for the Working Mathematician, Second Edition, GTM Springer Vol. 5, Springer-Verlag, New York (1998).
  15. D. Osipov, Adeles on n-Dimensional Schemes and categories C n Int. J. of Math. Vol. 18, no. 3 (2007), 269-279.
  16. D. V. Osipov, A. N. Parshin, Harmonic analysis on local fields and adelic spaces I, arXiv:0707.1766 (2007).
  17. L. Previdi, Sato Grassmannians for generalized Tate spaces, arXiv:1002.4863 (2010).
  18. D. Quillen, Higher Algebraic K-Theory I, in: Higher K-Theories, Lecture Notes in Mathe- matics 341, pp. 77-139, Springer-Verlag, New York (1973).
  19. L. Ribes, P. Zalesskii, Profinite Groups, Springer-Verlag, Berlin-Heidelberg (2000).
  20. F. Waldhausen, Algebraic K-Theory of Generalized Free Products, Part I, Annals of Math- ematics 2nd Ser., vol 108, No. 2 (Sept. 1978), pp. 135-204.
  21. C. Weibel, An Introduction to homological Algebra, Cambridge University Press (1995). Department Of Mathematics Yale University