Academia.eduAcademia.edu

Outline

Causal inference in perception

2010, Trends in Cognitive Sciences

https://doi.org/10.1016/J.TICS.2010.07.001

Abstract

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright

References (56)

  1. Pearl, J. (2009) Causal inference in statistics: an overview. Statistics Surveys 3, 96-146
  2. Hume, D. (1960) A Treatise on Human Nature, (1739 edn), Clerendon Press
  3. Holland, P.W. (1986) Statistics and Causal Inference. J. Am. Stat. Assoc. 81, 945-960
  4. Bell, A.J. and Sejnowski, T.J. (1995) An Information-Maximization Approach to Blind Separation and Blind Deconvolution. Neural Comput. 7, 1129-1159
  5. Bishop, C.M. (2006) Pattern Recognition and Machine Learning, Springer
  6. Jordan, M.I., ed. (1998) Learning in Graphical Models, Kluwer Academic Publishers
  7. Koller, D. and Friedman, N. (2009) Probabilistic Graphical Models: Principles and techniques, MIT Press
  8. Pearl, J. Causal Inference. J. Mach. Learn. Res. (in press)
  9. Spirtes, P. (2010) Introduction to causal inference. J. Mach. Learn. Res. 11, 1643-1662
  10. Griffiths, T.L. et al. (2008) Bayesian models of cognition. In Cambridge Handbook of Computational Cognitive Modeling (Sun, R., ed.), Cambridge University Press
  11. Lu, H. et al. (2008) Bayesian generic priors for causal learning. Psychol. Rev. 115, 955-984
  12. Novick, L.R. and Cheng, P.W. (2004) Assessing Interactive Causal Influence. Psychol. Rev. 111, 455-485
  13. Yuille, A.L. and Bu ¨lthoff, H.H. (1996) Bayesian decision theory and psychophysics. In Perception as Bayesian Inference (Knill, D.C. and Richards, W., eds), pp. 123-161, Cambridge University Press
  14. Battaglia, P.W. et al. (2010) Within-and cross-modal distance information disambiguates visual size-change perception. PLoS Comput. Biol. 6 (3), e1000697
  15. Kersten, D. et al. (2004) Object perception as Bayesian inference. Annu. Rev. Psychol. 55, 271-304
  16. Knill, D.C. (2003) Mixture models and the probabilistic structure of depth cues. Vision Res. 43, 831-854
  17. Ernst, M.O. and Bu ¨lthoff, H.H. (2004) Merging the senses into a robust percept. Trends Cogn. Sci. 8, 162-169
  18. Witten, I.B. and Knudsen, E.I. (2005) Why seeing is believing: merging auditory and visual worlds. Neuron 48, 489-496
  19. Knill, D.C. and Pouget, A. (2004) The Bayesian brain: the role of uncertainty in neural coding and computation. Trends Neurosci. 27, 712-719
  20. Alais, D. and Burr, D. (2004) The ventriloquist effect results from near- optimal bimodal integration. Curr. Biol. 14, 257-262
  21. Ernst, M.O. and Banks, M.S. (2002) Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415, 429- 433
  22. Maloney, L.T. and Mamassian, P. (2009) Bayesian decision theory as a model of human visual perception: Testing Bayesian transfer. Vis. Neurosci. 26, 147-155
  23. Shams, L. et al. (2005) Sound-induced flash illusion as an optimal percept. Neuroreport 16, 1923-1927
  24. Bresciani, J.P. et al. (2006) Vision and touch are automatically integrated for the perception of sequences of events. J. Vis. 6, 554-564
  25. Rowland, B. et al. (2007) A Bayesian model unifies multisensory spatial localization with the physiological properties of the superior colliculus. Exp. Brain Res. 180, 153-161
  26. Roach, N. et al. (2006) Resolving multisensory conflict: a strategy for balancing the costs and benefits of audio-visual integration. Proc. Biol. Sci. 273, 2159-2168
  27. Wozny, D.R. et al. (2008) Human trimodal perception follows optimal statistical inference. J. Vis. 8, 1-11
  28. Ko ¨rding, K. et al. (2007) Causal inference in multisensory perception. PLoS ONE 2, e943
  29. Beierholm, U. et al. (2009) Bayesian priors are encoded independently of likelihoods in human multisensory perception. J. Vis. 9, 1-9
  30. Hospedales, T. and Vijayakumar, S. (2009) Multisensory oddity detection as Bayesian inference. PLoS ONE 4, e4205
  31. Colonius, H. and Diederich, A. (2010) The optimal time window of visual-auditory integration: a reaction time analysis. Front. Integr. Neurosci. 4, Article 11
  32. Helbig, H.B. and Ernst, M.O. (2007) Knowledge about a common source can promote visual-haptic integration. Perception 36, 1523-1533
  33. Yuille, A.L. and Clark, J.J. (1993) Bayesian models, deformable templates and competitive priors. In Spatial vision in humans and robots (Harris, I. and Jenkin, M., eds), pp. 333-349, Cambridge University Press
  34. Knill, D.C. (2007) Robust cue integration: A Bayesian model and evidence from cue-conflict studies with stereoscopic and figure cues to slant. J. Vis. 7, 1-24
  35. Landy, M.S. et al. (1995) Measurement and modeling of depth cue combination: In defense of weak fusion. Vis. Res. 35, 389-412
  36. Jacobs, R.A. et al. (1991) Adaptive mixtures of local experts. Neural Comput. 3, 79-87
  37. Stevenson, I.H. and Ko ¨rding, K.P. (2009) Structural inference affects depth perception in the context of potential occlusion. In Advances in Neural Informational Processing Systems (Bengio, Y. et al., eds), pp. 1777-1784, MIT Press
  38. Stocker, A. and Simoncelli, E.P. (2008) A Bayesian model of conditioned perception. In Advances in Neural Information Processing Systems (Platt, John C. et al., eds), pp. 1490-1501, MIT Press
  39. Stocker, A.A. and Simoncelli, E.P. (2006) Noise characteristics and prior expectations in human visual speed perception. Nat. Neurosci. 9, 578-585
  40. Lu, H. et al. (2010) Recovering the functional form of the slow-and- smooth prior in global motion perception. J. Vis. 10 (7) (in press)
  41. Girshick, A.R. and Banks, M.S. (2009) Probabilistic combination of slant information: Weighted averaging and robustness as optimal percepts. J. Vis. 9, 1-20
  42. Natarajan, R. et al. (2009) Characterizing response behavior in multi- sensory perception with conflicting cues. In Advances in Neural Information Processing Systems 21 (Koller, D. et al., eds), pp. 1153- 1160, MIT Press
  43. Dokka, K. et al. (2010) Self versus environment motion in postural control. PLoS Comput. Biol. 19, e1000680
  44. Sato, Y. et al. (2007) Bayesian inference explains perception of unity and ventriloquism aftereffect: Identification of common sources of audiovisual stimuli. Neural Comput. 19, 3335-3355
  45. Hospedales, T. and Vijayakumar, S. (2008) Structure inference for Bayesian multisensory scene understanding. IEEE Transac. Pattern Anal. Mach. Intell. 30, 1-18
  46. Weisswange, T.H. et al., (2009) Can reinforcement learning explain the development of causal inference in multisensory integration? In IEEE 8th International Conference on Development and learning, pp. 263- 270, IEEE
  47. Yu, J.A. and Dayan, P. (2005) Uncertainty, neuromodulation, and attention. Neuron 46, 681-692
  48. Pearl, J. (2009) Causality: Models, reasoning, and inference, (2nd edn), Cambridge University Press
  49. Wallace, M.T. et al. (2004) Unifying mulitsensory signals across time and space. Exp. Brain Res. 158, 252-258
  50. Wei, K. and Ko ¨rding, K. (2009) Relevance of error: What drives motor adaptation? J. Neurophysiol. 101, 655-664
  51. Berniker, M. and Ko ¨rding, K. (2008) Estimating the sources of motor errors for adaptation and generalization. Nat. Neurosci. 11, 1454-1461
  52. Cheng, K. et al. (2007) Bayesian integration of spatial information. Psychol. Bull. 133, 625-637
  53. Etienne, A.S. and Jeffery, K.J. (2004) Path integration in mammals. Hippocampus 14, 180-192
  54. Shettleworth, S.J. and Sutton, J.E. (2005) Multiple systems of spatial learning: Dead reckoning and beacon homing in rats. J. Exp. Psychol. Anim. Behav. Proc. 31, 125-141
  55. Whishaw, I.Q. and Tomie, J. (1997) Piloting and dead reckoning dissociated by fimbria-fornix lesions in a rat food carrying task. Behav. Brain Res. 89, 87-97
  56. Etienne, A.S. et al. (1990) The effect of a single light cue on homing behavior of the golden hamster. Animal Behaviour 39, 17-41