ABSTRACTRecent studies have revealed an upper bound in motor adaptation, beyond which other learn... more ABSTRACTRecent studies have revealed an upper bound in motor adaptation, beyond which other learning systems may be recruited. The factors determining this upper bound are poorly understood. The multisensory integration hypothesis states that this limit arises from opposing responses to visual and proprioceptive feedback. As individuals adapt to a visual perturbation, they experience an increasing proprioceptive error in the opposite direction, and the upper bound is the point where these two error signals reach an equilibrium. Assuming that visual and proprioceptive feedback are weighted according to their variability, there should be a correlation between proprioceptive variability and the limits of adaptation. Alternatively, the proprioceptive realignment hypothesis states that the upper bound arises when the (biased) sensed hand position realigns with the target. When a visuo-proprioceptive discrepancy is introduced, the sensed hand position is biased towards the visual cursor a...
Uploads
Papers by Alissa Stover