Academia.eduAcademia.edu

Outline

Remarks on Physics as Number Theory

2011

Abstract

There are numerous indications that Physics, at its foundations, is algebraic Number Theory.

Key takeaways
sparkles

AI

  1. Physics fundamentally aligns with algebraic Number Theory, influencing modern theoretical frameworks.
  2. The fine structure constant relates to the Riemann zeta function, bridging quantum physics and number theory.
  3. Emerging models reject traditional particle-field dichotomies, emphasizing quantum information and networked interactions.
  4. The Quantum Computing Model provides refined insights into atomic structures, surpassing classical models like Bohr's.
  5. Exploring primes' hidden structures could unlock novel insights into quantum mechanics and the Riemann hypothesis.

References (48)

  1. L.M. Ionescu, On some points of math-physics from a computer science viewpoint.
  2. L.M. Ionescu, Quantum Relativity.
  3. L.M. Ionescu, On Quantum Relativity: an essay.
  4. L.M.Ionescu, A New Unifying Principle, 2005.
  5. L.M. Ionescu, works on arXiv.org and www.virequest.com (Research; Grant proposals).
  6. F. Akman, L. M. Ionescu, Path Integrals as Discrete Calculus, work planed for Fall 2011; see also Algebra Seminar presentation by F. Akman.
  7. L.M. Ionescu, On the arrow of time.
  8. L.M. Ionescu: 1) The Feynman legacy;
  9. Feynman Processes.
  10. J. Post, Quantum reprogramming.
  11. M. Wales, Quantum ideas.
  12. P. Degiovanni, Z/NZ CFT. Commun. Math. Phys. 127, 71-99 (1990);
  13. Donald Spector, Suppersymmetry and the Mobius Inversion Formula, Commun. Math. Phys. 127, 239-252 (1990).; 3) Bernard L. Julia, Statistical Theory of Numbers.
  14. M. Kuga, Galois' Dream: Group theory and Differential geometry, 1993.
  15. Wikipedia; see also [11].
  16. L.M.Ionescu, Math-physics seminar, Spring 2011.
  17. L.M. Ionescu, Cohomology of Feynman graphs.
  18. J. Baez, Generating functions for groupoids.
  19. L.M. Ionescu, 1) The Digital World Theory v.1: An invitation;
  20. Q++ and a Non-Standard Model: DWT v.2.
  21. Articles on Riemann equation and the distribution of primes:
  22. E. Bombieri, Prime teritory, The Sciences, Sept./Oct. 1992, pp.30-36.
  23. A. Granville, Harald Cramer and the distribution of primes.
  24. B. Riemann, On the number of prime numbers less then a given quantity.
  25. Carl Erickson, Prime numbers and the Riemann hypothesis.
  26. Matthew R. Watkins, Web site dedicated on number theory and physics, http://empslocal.ex.ac.uk/people/staff/mrwatkin/ a) Number theory and Physics, ˜/zeta/physics.htm
  27. A prime case of chaos, Whats happening in the mathematical sciences, Barry Cipra, Vol.4; ˜/cipra.htm
  28. The "encoding of the distribution of primes by the non-trivial zeros of RZF, ˜/endod- ing2.htm d) Prime Number Theorem proof outline, ˜/pnt5.htm.
  29. R. Bernales, Density of visible lattice points
  30. F. Akman, Applications of the Mobius inversion principle
  31. J.G. Leathem, G. H. Hardy, General theory of Dirichlet series, Cambridge texts in Mathe- matics and Mathematical-Physics, No.18, 1915.
  32. Benjamin Odgers, The distribution of prime numbers & The Riemann Zeta Function, 2002.
  33. L.M. Ionescu and students, http://my.ilstu.edu/ lmiones /Summer Research Acad- emy/Summer Research Academy 2011.html, http://cemast2011.webs.com/.
  34. Michaelmas, Introducing Riemann zeta function, Part III: Prime numbers, 2004.
  35. Robert Baillie, Experiments with zeta zeros and Peron's formula, arxiv:1103.6226v1, 2011.
  36. Physics Forums, http://www.physicsforums.com/
  37. Arnold, Mathematical Aspects of Classical and Celestial Mechanics, V.V. Kozlov (Author), A.I. Neishtadt, V.I. Arnold, Springer, 2010.
  38. A. M. Odlyzko, Primes, Quantum Chaos and Computers.
  39. M. V. Berry, Semiclassical formula for the number of variance of the Riemann zeros, Nonlin- earity I (1988), 399-407.
  40. Proth Primes, http://primes.utm.edu/glossary/xpage/ProthPrime.html, http://www.prothsearch.net/ etc.
  41. Robert Baillie, New Primes of the Form k • 2 n + 1, Mathematics of Computation, Vol.33, No.148, )ct. 1979, pp.1333-1336.
  42. G.V. Cormack, H.C. Williams, Some very large primes of the form k • 2 m + 1, Mathematics of Computation, Vol. 35, No. 152, Oct. 1980, Pp. 1419-1421.
  43. M. V. Berry, Semiclassical formula for the number variance of the Riemann zeros, Nonlinearity 1 (1988) 399-407.
  44. M. R. Watkins, ˜/zeta/bump-gue.htm.
  45. Ronnie Mainieri, Arithmetical properties of dynamical zeta functions.
  46. Ph. Blanchard, S. Fortunato and H. Satz, The Hagedorn Temperature and Partition Ther- modynamics, hep-th/0401103.
  47. R. M. Robinson, The converse of Fermat's Theorem
  48. L.M. Ionescu, On supersymmetry, anti-gravity and free-energy, Proceedings COFE 2011. Department of Mathematics, Illinois State University, IL 61790-4520 E-mail address: lmiones@ilstu.edu