Academia.eduAcademia.edu

Outline

Linear stability of high-dimensional symplectic systems

1990, Il Nuovo cimento della Società italiana di fisica. B

Abstract

We show that for linear high-dimensional symplectic systems, the stability only depends on the mean number of interactions between subsystems. Numerical experiments confirm this result and its genericity.

References (13)

  1. M. R. GARDNER and W. R. ASHBY: Nature, 228, 784 (1970).
  2. D. D. SILJAK: Nature, 249, 280 (1974);
  3. A. ROBERTS: Nature, 251, 607 (1974);
  4. P. T. SAUNDERS and M. J. BAZIN: Nature, 256, 120 (1975).
  5. R. M. MAY: Nature, 238, 413 (1972);
  6. R. M. MAY: Stability and Complexity in Model Ecosystems (Princeton University Press, Princeton, N.J., 1974).
  7. C. FROESCHLE and A. LONGHI: Economie appliqu~e, XL, 1, 49 (1987);
  8. C. FROESCHLE and J. L. GAUTERO: in Long Term Dynamical Behavior of Natural and Artificial n-Bodies Systems (Kluwer Academic Publisher, Dordrecht/Boston/London, 1988);
  9. C. FROESCHLE and J. L. GAUTERO: Conference on Non-linear Dynamics (World Scientific, Singapore, 1989), p. 236.
  10. C. FROESCHLE: Phys. Rev. A, 18, 277 (1978).
  11. G. PALADIN and A. VULPIANI: Phys. Left., 111, 333 (1985);
  12. A. GIANSANTI, M. PETTINI and A. VULPIANI: Phys. Left. A, 109, 451 (1985).
  13. A. E. RoY, I. W. WALXER and A. J. C. MCDONALD: Stability of the solar system and its minor natural and artificial bodies, NATO ASI Series.