Modules attached to extension bundles
Boletín de la Sociedad Matemática Mexicana
https://doi.org/10.1007/S40590-022-00418-7Abstract
In this article we study modules over wild canonical algebras which correspond to extension bundles [9] over weighted projective lines. We prove that all modules attached to extension bundles can be established by matrices with coefficients related to the relations of the considered algebra. Moreover, we expand the concept of extension bundles over weighted projective lines with three weights to general weight type and establish similar results in this situation. Finally, we present a method to compute matrices for all modules attached to extension bundles using cokernels of maps between direct sums of line bundles.
References (15)
- P. Dowbor, H. Meltzer, and A. Mróz, An algorithm for the construction of exceptional modules over tubular canonical algebras, J. Algebra 323 (2010), no. 10, 2710-2734.
- P. Dowbor, H. Meltzer, and A. Mróz, Parametrizations for integral slope homogeneous mod- ules over tubular canonical algebras, Algebr. Represent. Theory 17(1) (2014), 321-356.
- P. Dowbor, H. Meltzer, and A. Mróz, An algorithm for the construction of parametrizing bi- modules for homogeneous modules over tubular canonical algebras, Algebr. Represent. Theory 17(1) (2014), 357-405.
- J. A. Drozd and V. V. Kirichenko, Finite Dimensional Algebras, Springer-Verlag, Berlin, Heidelberg, New York, (1994).
- W. Geigle and H. Lenzing, A class of weighted projective curves arising in representation theory of finite dimensional algebras. In: Singularities, representations of algebras, and vector bundles. Springer Lecture Notes in Mathematics 1273 (1987), 265-297.
- D. E. Kędzierski and H. Meltzer, Schofield induction for sheaves on weighted projective lines. Commun. Algebra 41, No. 6 (2013), 2033-2039.
- D. E. Kędzierski and H. Meltzer, Exceptional modules over wild canonical algebras, Collo- quium Mathematicum 162 (2020), 159-180.
- S. Komoda and H. Meltzer, Indecomposable modules for domestic canonical algebras in arbi- trary characteristic, Int. J. Algebra 2 (2008), no. 4, 153-161.
- D. Kussin, H. Lenzing, and H. Meltzer, Triangle singularities, ADE-chains, and weighted projective lines, Adv. Math. 237 (2013), 194-251.
- D. Kussin, H. Lenzing, and H. Meltzer, Nilpotent operators and weighted projective lines, Journal für die reine und angewandte Mathematik 685 (2013), 33-71.
- D. Kussin and H. Meltzer, Indecomposable modules for domestic canonical algebras. J. Pure Appl. Algebra 211, No. 2 (2007), 471-483.
- H. Meltzer, Exceptional vector bundles, tilting sheaves and tilting complexes for weighted projective lines. Memoirs AMS 808 (2004).
- H. Meltzer, Exceptional modules for tubular canonical algebras. Algebr. Represent. Theory 10, No. 5 (2007), 481-496.
- C. M. Ringel, Tame algebras and integral quadratic forms. Springer Lecture Notes in Math- ematics 1099 (1984).
- C. M. Ringel, Exceptional modules are tree modules. Linear Algebra Appl. 275-276 (1998), 471-493. Institut of Mathematics, Szczecin University, 70 -451 Szczecin, Poland Email address: dawid.kedzierski@usz.edu.pl, hagen.meltzer@usz.edu.pl