Abstract
Let k be a field and let E be a finite quiver. We study the structure of the finitely presented modules of finite length over the Leavitt path algebra L k (E) and show its close relationship with the finite-dimensional representations of the inverse quiver E of E, as well as with the class of finitely generated P k (E)-modules M such that Tor P k (E) q (k |E 0 | , M ) = 0 for all q, where P k (E) is the usual path algebra of E. By using these results we compute the higher K-theory of the von Neumann regular algebra Q k (E) = L k (E)Σ −1 , where Σ is the set of all square matrices over P k (E) which are sent to invertible matrices by the augmentation map ǫ : P k (E) → k |E 0 | .
References (33)
- G. Abrams and G. Aranda Pino. The Leavitt path algebra of a graph. J. Algebra, 293(2):319-334, 2005.
- F. Albrecht. On projective modules over semi-hereditary rings. Proc. Amer. Math. Soc., 12:638- 639, 1961.
- P. Ara. Finitely presented modules over Leavitt algebras. J. Pure Appl. Algebra, 191(1-2):1-21, 2004.
- P. Ara and M. Brustenga. The regular algebra of a quiver. J. Algebra, 309(1):207-235, 2007.
- P. Ara and M. Brustenga. Mixed quiver algebras. 2008. Preprint.
- P. Ara, M. Brustenga, and G. Cortiñas. K-theory for Leavitt path algebras. 2009. Preprint.
- P. Ara and W. Dicks. Universal localizations embedded in power-series rings. Forum Math., 19(2):365-378, 2007.
- P. Ara, K. R. Goodearl, and E. Pardo. K 0 of purely infinite simple regular rings. K-Theory, 26(1):69-100, 2002.
- P. Ara, M. A. Moreno, and E. Pardo. Nonstable K-theory for graph algebras. Algebr. Represent. Theory, 10:157-178, 2007.
- M. Auslander, I. Reiten, and S. O. Smalø. Representation theory of Artin algebras, volume 36 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1997. Corrected reprint of the 1995 original.
- G. M. Bergman and W. Dicks. Universal derivations and universal ring constructions. Pacific J. Math., 79(2):293-337, 1978.
- A. J. Berrick and M. E. Keating. Categories and modules with K-theory in view, volume 67 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2000.
- P. M. Cohn. Free rings and their relations, volume 19 of London Mathematical Society Monographs. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London, second edition, 1985.
- J. Cuntz. Simple C * -algebras generated by isometries. Comm. Math. Phys., 57(2):173-185, 1977.
- J. Cuntz and W. Krieger. A class of C * -algebras and topological Markov chains. Invent. Math., 56(3):251-268, 1980.
- W. Dicks. Private communication. November 2002.
- M. Farber and P. Vogel. The Cohn localization of the free group ring. Math. Proc. Cambridge Philos. Soc., 111(3):433-443, 1992.
- S. M. Gersten. K-theory of free rings. Comm. Algebra, 1:39-64, 1974.
- T. Y. Lam. Lectures on modules and rings, volume 189 of Graduate Texts in Mathematics. Springer- Verlag, New York, 1999.
- W. G. Leavitt. Modules without invariant basis number. Proc. Amer. Math. Soc., 8:322-328, 1957.
- W. G. Leavitt. The module type of a ring. Trans. Amer. Math. Soc., 103:113-130, 1962.
- J. Lewin. Free modules over free algebras and free group algebras: The Schreier technique. Trans. Amer. Math. Soc., 145:455-465, 1969.
- A. Neeman. Nonconmutative localisation in algebraic K-theory. II. Adv. Math., 213(1):785-819, 2007.
- A. Neeman and A. Ranicki. Noncommutative localization and chain complexes I. Algebraic K- and L-theory. 2001. arXiv:math/0109118v1 [math.RA].
- A. Neeman and A. Ranicki. Noncommutative localisation in algebraic K-theory. I. Geom. Topol., 8:1385-1425 (electronic), 2004.
- A. Ranicki and D. Sheiham. Blanchfield and Seifert algebra in high-dimensional boundary link theory. I. Algebraic K-theory. Geom. Topol., 10:1761-1853 (electronic), 2006.
- J. Rosenberg. Algebraic K-theory and its applications, volume 147 of Graduate Texts in Mathe- matics. Springer-Verlag, New York, 1994.
- A. H. Schofield. Representation of rings over skew fields, volume 92 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1985.
- D. Sheiham. Invariants of boundary link cobordism. II. The Blanchfield-Duval form. In Non- commutative localization in algebra and topology, volume 330 of London Math. Soc. Lecture Note Ser., pages 143-219. Cambridge Univ. Press, Cambridge, 2006.
- M. Siles Molina. Algebras of quotients of path algebras. J. Algebra, 319(12):5265-5278, 2008.
- B. Stenström. Rings of quotients. Springer-Verlag, New York, 1975. Die Grundlehren der Mathe- matischen Wissenschaften, Band 217, An introduction to methods of ring theory.
- R. G. Swan. Algebraic K-theory. Lecture Notes in Mathematics, No. 76. Springer-Verlag, Berlin, 1968.
- C.A. Weibel. An introduction to algebraic K-theory. A forthcoming graduate textbook, see http://www.math.rutgers.edu/~weibel/Kbook.html.