Academia.eduAcademia.edu

Outline

Algebraic description of -modules associated to matrices

2006, Bulletin des Sciences Mathématiques

https://doi.org/10.1016/J.BULSCI.2005.06.002

Abstract

In this paper we give a classification of regular holonomic D-modules whose characteristic variety is contained in the union of the conormal bundles to the orbits of the group of invertible matrices of order 3. The main result is an equivalence between the category of these differential modules and the one of graded modules of finite type over the Weyl algebra of invariant differential operators under the action of the group of invertible matrices. We infer that such objects can be understood in terms of finite diagrams of complex vector spaces of finite dimension related by linear maps.

References (20)

  1. A. Borel, Algebraic D-Modules, Perspect. Math., vol. 2, Academic Press, 1987.
  2. L. Boutet de Monvel, D-modules holonômes réguliers en une variable, in: Mathématiques et Physique, Séminaire de L'ENS 1979-1982, in: Progr. Math., vol. 37, 1983, pp. 313-321.
  3. L. Boutet de Monvel, Revue sur le théorie des D-modules et modèles d'opérateurs pseudodifférentiels, in: Math. Phys. Stud., vol. 12, Kluwer Acad. Publ., 1991, pp. 1-31.
  4. T. Braden, M. Grinberg, Perverse sheaves on rank stratifications, Duke Math. J. 96 (2) (1999) 317-362.
  5. J.L. Brylinski, B. Malgrange, J.L. Verdier, Transformation de Fourier Géométrique II, C. R. Acad. Sci. Paris, Ser. I 303 (1986) 193-198.
  6. A. Galligo, M. Granger, P. Maisonobe, D-modules et faisceaux pervers dont le support singulier est un croisement normal, I, Ann. Inst. Fourier (Grenoble) 35 (1) (1983) 1-48;
  7. A. Galligo, M. Granger, P. Maisonobe, D-modules et faisceaux pervers dont le support singulier est un croisement normal, II, Astérisque 130 (1985) 240-259.
  8. S.I. Gelfand, S.M. Khoroshkin, Algebraic description of certain categories of D-modules, Funktsional. Anal. i Prilozhen. 19 (3) (1985) 56-57.
  9. M. Kashiwara, On the maximal overdetermined systems of linear partial differential equations I, Publ. Res. Inst. Math. Sci. 10 (1974/1975) 563-579.
  10. M. Kashiwara, On holonomic systems of linear partial differential equations II, Invent. Math. 49 (1978) 121-135.
  11. M. Kashiwara, The Riemann-Hilbert problem for holonomic systems, Publ. Res. Inst. Math. Sci. 20 (1984) 319-365.
  12. M. Kashiwara, Algebraic study of systems of partial differential equations, Mém. Soc. Math. France 63 (123(4)) (1995).
  13. M. Kashiwara, D-modules and microlocal calculus, in: Iwanami Series in Modern Mathematics, in: Transl. Math. Monographs, vol. 217, American Mathematical Society, 2003.
  14. M. Kashiwara, T. Kawai, On holonomic systems of Microdifferential Equations III: Systems with regular singularities, Publ. Res. Inst. Math. Sci. 17 (1981) 813-979.
  15. R. Macpherson, K. Vilonen, Perverse sheaves with regular singularities along the curve x n = y n , Comment. Math. Helv. 63 (1988) 89-102.
  16. Z. Mebkhout, Une autre équivalence de catégories, Comp. Math. 51 (1984) 63-88.
  17. P. Nang, D-modules associated to 3 × 3 matrices, C. R. Acad. Sci. Paris, Ser. I 338 (2004) 139-144.
  18. P. Nang, D-modules associated to the group of similitudes, Publ. Res. Inst. Math. Sci. 35 (2) (1999) 223-247.
  19. P. Nang, D-modules holonômes réguliers associés au groupe des similitudes, Thèse de Doctorat, Univ. Paris VI, 1996.
  20. L. Narvaez Macarro, Faisceaux pervers dont le support singulier est le germe d'une courble plane irré- ductible, Thèse de 3éme Cycle, Univ. Paris VII, 1984.