Biophysical and economic limits to negative CO2 emissions
2015, Nature Climate Change
https://doi.org/10.1038/NCLIMATE2870Abstract
AI
AI
This paper discusses the need for negative emissions technologies (NETs) to achieve climate goals of limiting global warming to below 2°C. By examining various NETs, it quantifies their potential impacts on land, resources, and costs, while highlighting the economic and biophysical limits to their widespread implementation. The findings underscore the importance of understanding the implications of NETs for climate policy and resource management.
References (119)
- Le Quéré, C. et al. The global carbon budget 1959-2011. Earth System Science Data 5, 165-185 (2013).
- Peters, G. P. et al. The challenge to keep global warming below 2ᵒC. Nature Clim. Change 3, 4-6 (2013). Short article outlining the enormous challenge of meeting a 2ᵒC climate stabilization target.
- Edenhofer, O. et al. (Eds) Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. (2014). The latest IPCC Assessment Report on mitigation options available to stabilise climate.
- Tavoni, M. et al. Post-2020 climate agreements in the major economies assessed in the light of global models. Nature Clim. Change 5, 119-126 (2015).
- Krey, V., Luderer, G., Clarke, L. & Kriegler, E. Getting from here to there -energy technology transformation pathways in the EMF27 scenarios. Climatic Change 123, 369-382 (2014).
- Edmonds, J et al. Can radiative forcing be limited to 2.
- Wm -2 without negative emissions from bioenergy and CO 2 capture and storage? Climatic Change 118, 29-43 (2013).
- van Vuuren, D. P. et al. The role of negative CO 2 emissions for reaching 2 °C -insights from integrated assessment modelling. Climatic Change 118, 15-27 (2013).
- Rogelj, J., McCollum, D. L., Reisinger, A., Meinshausen, M. & Riahi, K. Probabilistic cost estimates for climate change mitigation. Nature 493, 79-83 (2013).
- Clarke, L. et al. Assessing transformation pathways. In: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (ed. Edenhofer, O. et al.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. (2014).
- Riahi, K. et al. Locked into Copenhagen pledges -Implications of short-term emission targets for the cost and feasibility of long-term climate goals. Technological Forecasting and Social Change Part A, 90, 8-23 (2015).
- Gasser, T., Guivarch, G., Tachiiri, K., Jones, C. D. & Ciais, P. Negative emissions physically needed to keep global warming below 2°C Nature Comm. doi:10.1038/ncomms8958 (2015).
- Obersteiner, M. et al. Managing climate risk. Science 294, 786-787 (2001).
- Creutzig F. et al. Bioenergy and climate change mitigation: an assessment. Glob. Change Biol. Bioenergy doi:10.1111/gcbb.12205 (2015).
- Keith, D. Why capture CO 2 from the atmosphere. Science 325, 1654-1655 (2009).
- Socolow, R. et al. Direct air capture of CO 2 with chemicals: A technology assessment for the APS Panel on Public Affairs. American Physical Society. 92pp. (2011). In depth assessment of direct air capture technologies.
- Schuiling, R. D. & Krijgsman, P. Enhanced weathering: an effective and cheap tool to sequester CO 2 . Climatic Change 74, 349-354 (2006).
- Rau, G. H., Knauss, K. G., Langer, W. H. & Caldeira, K. Reducing energy-related CO 2 emissions using accelerated weathering of limestone. Energy 32,1471-1477 (2007).
- Köhler, P., Hartmann, J. & Wolf-Gladrow, D. A. Geoengineering potential of artificially enhanced silicate weathering of olivine. Proc. Natl Acad. Sci. USA 107, 20228-20233 (2010).
- Hartmann, J. & Kempe, S. What is the maximum potential for CO 2 sequestration by "stimulated" weathering on the global scale? Naturwissenschaften 95, 1159-1164 (2008).
- Kelemen, P. B. & Matter, J. M. In situ carbonation of peridotite for CO 2 storage. Proc. Natl Acad. Sci. USA 105, 17295-17300 (2008).
- Arora, V. K. & Montenegro, A. Small temperature benefits provided by realistic afforestation efforts. Nat. Geosci. 4, 514-518, (2011).
- Canadell, J. G. & Raupach, M. R. Managing forests for climate change mitigation. Science 320, 1456-1457 (2008).
- Jackson, R. B. et al. Protecting climate with forests. Environ. Res. Lett. 3, 044006 (2008).
- Sarmiento, J. L., Gruber, N., Brzezinski, M. A. & Dunne, J. P. High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427, 56-60 (2004).
- Joos, F., Sarmiento, J. L. & Siegenthaler, U. Estimates of the effect of Southern Ocean iron fertilization on atmospheric CO 2 concentrations. Nature 349, 772-775 (1991).
- Kheshgi, H. S. Sequestering atmospheric carbon dioxide by increasing ocean alkalinity. Energy 20, 915-922 (1995).
- Smith, P. Soils and climate change. Curr. Opin. Environ. Sust. 4, 539-544 (2012).
- Powlson, D. S. et al. Limited potential of no-till agriculture for climate change mitigation. Nature Clim. Change 4, 678-683 (2014).
- Smith, P. et al. Greenhouse gas mitigation in agriculture. Phil. Trans. R. Soc. B 363, 789-813 (2008).
- Woolf, D., Amonette, J. E., Street-Perrott. A., Lehmann, J. & Joseph, S. Sustainable biochar to mitigate global climate change. Nature Comm. 1, Article 56, doi:10.1038/ncomms1053 (2010).
- Schiermeier, Q. Convention discourages ocean fertilization. Nature (online; 12 November 2007) doi:10.1038/news.2007.230 (2007).
- Smith, P. et al. How much land based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? Glob. Change Biol. 19, 2285-2302 (2013).
- Smith P. et al. Agriculture, forestry and other land use (AFOLU). In: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (ed. Edenhofer, O. et al.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. (2014).
- Smith P. Soil carbon sequestration and biochar as negative emission technologies. Glob. Change Biol. (in review) (2015).
- Azar, C. et al. The feasibility of low CO 2 concentration targets and the role of bio-energy carbon- capture and storage. Climatic Change 100, 195-202 (2010).
- Kriegler, E. et al. What does the 2°C target imply for a global climate agreement in 2020? The LIMITS study on Durban Platform scenarios. Clim. Change Econ. 04, 1340008. doi: 10.1142/S2010007813400083 (2013).
- Strengers, B. J., Minnen, J. G. V. & Eickhout, B. The role of carbon plantations in mitigating climate change: potentials and costs. Climatic Change 88, 343-366 (2008).
- Wise, M. et al. Implications of limiting CO 2 concentrations for land use and energy. Science 324, 1183-1186 (2009).
- Reilly, J. et al. Using land to mitigate climate change: hitting the target, recognizing the trade-offs Environ. Sci. Technol. 46, 5672-5679 (2012).
- Humpenöder, F. et al. Investigating afforestation and bioenergy CCS as climate change mitigation strategies. Environ. Res. Lett. 9, 064029 (13pp) (2014).
- Chen, C. & Tavoni, M. Direct air capture of CO 2 and climate stabilization: a model based assessment. Climatic Change 118, 59-72 (2013).
- Fuss, S. et al. Betting on negative emissions. Nature Clim. Change 4, 850-853 (2014).
- Kriegler E. et al. Is atmospheric carbon dioxide removal a game changer for climate change mitigation? Climatic Change 118, 45-57 (2013).
- Sims R. et al. Transport. In: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (ed. Edenhofer, O. et al.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA (2014).
- Kriegler, E. et al. Making or breaking climate targets: The AMPERE study on staged accession scenarios for climate policy. Technological Forecasting and Social Change, Part A 90, 24-44. doi: 10.1016/j.techfore.2013.09.021. (2015). Study showing the impact of delay in implementation of mitigation on climate stabilisation over the course of the 21 st Century.
- Boden, T. A., Marland, G. & Andres, R. J. Global, regional, and national fossil-fuel CO 2 emissions. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy. Oak Ridge, Tenn., U.S.A. (2015).
- Krey, V. et al. Annex II: Metrics and Methodogy, Section A.II.10: Scenario Data. In: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (ed. Edenhofer, O. et al.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. (2014).
- National Academy of Sciences Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration. The National Academies Press, Washington DC, USA, 140pp, (2015). In depth report on carbon dioxide removal (equivalent to negative emissions) technologies.
- Calvin, K. et al. A multi-model analysis of the regional and sectoral roles of bioenergy in near- and long-term CO 2 emissions reduction. Climate Change Economics 4, 1340014 (32 pages). (2013).
- Popp, A. et al. Land-use transition for bioenergy and climate stabilization: model comparison of drivers, impacts and interactions with other land use based mitigation options. Climatic Change 123, 495-509 (2014).
- Bonsch, M. et al. Trade-offs between land and water requirements for large-scale bioenergy production. Glob. Change Biol. Bioenergy doi: 10.1111/gcbb.12226 (2014).
- Wieder, W. R., Cleveland, C. C., Smith, W. K. & Todd-Brown, K. Future productivity and carbon storage limited by terrestrial nutrient availability. Nat. Geosci. 8, 441-444 (2015).
- Smith, L. J. & Torn, M. S. Ecological limits to terrestrial biological carbon dioxide removal. Climatic Change 118, 89-103 (2013). Study examining some ecological limits to land based negative emission technologies.
- Scott, V., Haszeldine, R. S., Tett, S. F. B. & Oschlies, A. Fossil fuels in a trillion tonne world. Nature Clim. Change 5, 419-423 (2015).
- Benson, S.M. et al. (2012), Carbon capture and Storage, Chapter 13 in Global Energy Assessment Toward a Sustainable Future, Cambridge University Press. (Online ISBN:9780511793677;
- Hardback ISBN:9781107005198; Book DOI: http://dx.doi.org/10.1017/CBO9780511793677).
- Zhao, K. & Jackson, R. B. Biophysical forcings of land-use changes from potential forestry activities in North America. Ecol. Monogr. 84, 329-353 (2014).
- Zhuang, Q., Qin, Z, & Chen, M. Biofuel, land and water: maize, switchgrass or Miscanthus? Environ. Res. Lett. 8, 015020 (6pp) (2013).
- Edenhofer, O. et al. (eds) IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation. Cambridge University Press, New York, NY, USA (2011).
- Renforth, P. The potential of enhanced weathering in the UK. Int. J. Greenh. Gas Con. 10, 229- 243 (2012).
- Christian, D., Riche, A. B. & Yales, N. E. Growth, yield and mineral content of Miscanthus × giganteus grown as a biofuel for 14 successive harvests. Ind. Crop Prod. 28, 320-327 (2008).
- St Clair, S., Hiller, J. & Smith, P. Estimating the pre-harvest greenhouse gas costs of energy crop production. Biomass Bioenerg. 32, 442-452 (2008).
- Swann, A. L., Fung, I. Y., Levis, S., Bonan, G. B. & Doney, S. C. Changes in Arctic vegetation amplify high-latitude warming through the greenhouse effect. Proc. Natl Acad. Sci. USA 107, 1295-1300 (2010).
- Ma, D., Notaro, M., Liu, Z.Y., Chen, G.S. & Liu, Y. Q. Simulated impacts of afforestation in East China monsoon region as modulated by ocean variability. Clim. Dynam. 41, 2439-2450 (2013).
- Betts, A.K. & Ball, J.H. Albedo over the boreal forest. J. Geophys. Res. 102 (D24), 28901-28910. doi:10.1029/96JD03876 (1997).
- Betts R.A. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408, 187-190 (2007).
- Betts R.A., Falloon, P. D., Goldewijk, K. K. & Ramankutty, N. Biogeophysical effects of land use on climate: Model simulations of radiative forcing and large-scale temperature change. Agr. Forest Meteorol. 142, 216-233 (2007).
- Schaeffer, M. et al. CO 2 and albedo climate impacts of extratropical carbon and biomass plantations. Global Biogeochem. Cy. 20, GB2020, doi:10.1029/2005GB002581 (2006).
- Jones, A. D. et al. Greenhouse gas policy influences climate via direct effects of land-use change. J. Climate 26, 3657-3670 (2013).
- Mazzotti, M., Bociocchi, R., Desmond, M. J. & Socolow, R. Direct air capture of CO 2 with chemicals: optimization of a two-loop hydroxide carbonate system using a countercurrent airliquid contactor. Climatic Change 118, 119-135 (2013).
- Klein, D. et al. The value of bioenergy in low stabilization scenarios: an assessment using REMIND-MAgPIE. Climatic Change 123, 705-718 (2014).
- Lenton, T. M. The global potential for carbon dioxide removal. In: Geoengineering of the Climate System (ed. Harrison, R. M. & Hester, R. E.) Royal Society of Chemistry, London, UK (2014).
- Haberl, H. et al. Quantifying and mapping the human appropriation of net primary production in earth's terrestrial ecosystems. Proc. Natl Acad. Sci. USA 104, 12942-12947 (2007).
- Schueler, V., Weddige, U., Beringer, T., Gamba, L. & Lamers, P. Global biomass potentials under sustainability restrictions defined by the European Renewable Energy Directive 2009/28/EC. Glob. Change Biol. Bioenergy 5, 652-663 (2013).
- Canadell, J.G., Schulze, E.-D. Global potential of biospheric carbon management for climate mitigation. Nature Comm. 5, 5282: 1-12. doi: 10.1038/ncomms6282 (2014).
- Smith, P. et al. Competition for land. Phil. Trans. R. Soc. B 365, 2941-2957 (2010).
- Thompson, B. & Cohen, M. J. The impact of climate change and bioenergy on nutrition. Springer, Rome, Italy (2012).
- Valentine, J., Clifton-Brown, J., Hastings, A., Robson, P, Allison G. & Smith, P. Food vs. fuel: the use of land for lignocellulosic 'next generation' energy crops that minimise competition with primary food production. Glob. Change Biol. Bioenergy 4, 1-19 (2012).
- Bustamante, M. et al. Co-benefits, trade-offs, barriers and policies for greenhouse gas mitigation in the Agriculture, Forestry and Other Land Use (AFOLU) sector. Glob. Change Biol. 20, 3270- 3290 (2014).
- Powell, T. W. R. & Lenton, T. M. Future carbon dioxide removal via biomass energy constrained by agricultural efficiency and dietary trends. Energy Environ. Sci. 5, 8116-8133 (2012).
- Smith, P. Delivering food security without increasing pressure on land. Global Food Security 2, 18-23 (2013).
- Bajželj, B. et al. The importance of food demand management for climate mitigation. Nature Clim. Change 4, 924-929 (2014).
- Vörösmarty, C. J. Global water resources: vulnerability from climate change and population growth. Science 289, 284-288 (2000).
- Stolaroff, J. K., Keith, D. W. & Lowry, G. V. Carbon dioxide capture from atmospheric air using sodium hydroxide spray. Environ. Sci. Technol. 42, 2728-2735 (2008).
- Oki, T. & Kanae, S. Global hydrological cycles and world water resources. Science 313, 1068- 1072 (2006).
- Postel, S. L., Daily, G. C. & Ehrlich, P. R. Human appropriation of renewable freshwater. Science 271, 785-788 (1996).
- Rockstrom, J. et al. The unfolding water drama in the Anthropocene: towards a resilience-based perspective on water for global sustainability. Ecohydrol. 7, 1249-1261 (2014).
- Creutzig, F. et al. Reconciling top-down and bottom-up modelling on future bioenergy deployment. Nature Clim. Change 2, 320-327 (2012).
- Cowie, A. L., Smith, P. & Johnson, D. Does soil carbon loss in biomass production systems negate the greenhouse benefits of bioenergy? Mitigation Adapt. Strateg. Glob. Chang. 11, 979- 1002 (2006).
- McCollum, D. et al. Energy investments under climate policy: a comparison of global models. Climate Change Economics 4, 1340010, doi: 10.1142/S2010007813400101 (2013).
- Creutzig, F. Economic and ecological views on climate change mitigation with bioenergy and negative emissions. Glob. Change Biol. Bioenergy doi:10.1111/gcbb.12235 (2015).
- Kato, E. & Yamagata, Y. BECCS capability of dedicated bioenergy crops under a future land-use scenario targeting net negative carbon emissions. Earth's Future 2, 421-439 (2014).
- Scott, V., Gilfillan, S., Markusson, N., Chalmers, H., Haszeldine, R. S. Last chance for carbon capture and storage. Nature Clim. Change 3, 105-111 (2012).
- Blackford, J. et al. Detection and impacts of leakage from sub-seafloor deep geological carbon dioxide storage. Nature Clim. Change 4, 1011-1016 (2014).
- Luderer, G. et al. Economic mitigation challenges: how further delay closes the door for achieving climate targets. Environ. Res. Lett. 8, 034033 (2013). Study showing the urgency of climate mitigation action. (http://www.cger.nies.go.jp/gcp/magnet.html). GPP was supported by the Norwegian Research Council (236296). CDJ was supported by the Joint UK DECC/Defra Met Office Hadley Centre Climate Programme (GA01101). JGC acknowledges support from the Australian Climate Change Science Program. EKa and YY were supported by the ERTDF (S-10) from the Ministry of the Environment, Japan. References
- Plevin, R.J., Delucchi, M., & Creutzig, F. Using attributional life cycle assessment to estimate climate-change mitigation benefits misleads policy makers. J. Indust. Ecol. 18, 73-83 (2014).
- IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry. Available at: http://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf.html. (Accessed 25th June 2015) (2003).
- Macknick, J. et al. Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature. Environ. Res. Lett. 7, 045802 (2012).
- Lackner, K.S. (pers. comm.)
- Phyllis2 Database. Available at: https://www.ecn.nl/phyllis2/ (Accessed 25th June 2015) (2015).
- Gabrielle, B. et al. Paving the way for sustainable bioenergy in Europe: technological options and research avenues for large-scale biomass feedstock supply. Renew. Sust. Energ. Rev. 33, 11- 25 (2014).
- Lal, R. World crop residues production and implications of its use as a biofuel. Environ. Int. 31, 575-584 (2005).
- Repo, A., Böttcher, H., Kindermann, G., & Liski, J. et al. Sustainability of forest bioenergy in Europe: land-use-related carbon dioxide emissions of forest harvest residues. Glob. Change Biol. Bioenergy 7, 877-887 (2014).
- Smith, J. et al. What is the potential for biogas digesters to improve soil fertility and crop production in Sub-Saharan Africa? Biomass Bioenerg. 70, 58-72 (2014).
- Smeets, E. M. W., Bouwman, L. F., Stehfest, E., van Vuuren, D. P. & Posthuma, A. Contribution of N 2 O to the greenhouse gas balance of first-generation biofuels. Glob. Change Biol. 15, 1-23 (2009).
- Don, A. et al. Land-use change to bioenergy production in Europe: implications for greenhouse gas balance and soil carbon. Glob. Change Biol. Bioenergy 4, 372-391 (2012).
- Calvin, K. et al. Trade-offs of different land and bioenergy policies on the path to achieving climate targets. Climatic Change 123, 691-704 (2014).
- Searchinger, T. et al. Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319, 1238-1240 (2008).
- Havlik, P. et al. Global land-use implications of first and second generation biofuel targets. Energy Policy 39, 5690-5702 (2011).
- Field, C. B., Campbell, J. E. & Lobell, D. B. Biomass energy: the scale of the potential resource. Trends Ecol. Evol. 23, 65-72 (2008).
- Vuichard, N., Ciais, P. & Wolf, A. Soil carbon sequestration or biofuel production: new land-use opportunities for mitigating climate over abandoned Soviet farmlands. Environ. Sci. Tech. 43, 8678-8683 (2009).
- Forestry Commission. Water use by trees. Information Note, Forestry Commission. Available at: http://www.forestry.gov.uk/pdf/FCIN065.pdf/$FILE/FCIN065.pdf (Accessed 25 th June 2015) (2005).
- Rochelle, G. T. Amine scrubbing for CO 2 capture. Science 325, 1652-1654 (2009).
- National Energy Technology Laboratory Estimating freshwater needs to meet future thermoelectric generation requirements. Pittsburgh, PA, 2009, DOE/NETL-400/2009/1339 (2009).
- Chandel, M. K., Pratson, L. F. & Jackson, R. B. The potential impacts of climate-change policy on fresh water use in thermoelectric power generation. Energy Policy 39, 6234-6242 (2011).
- CIPEC Benchmarking the energy consumption of Canadian open-pit mines. Available at: http://www.nrcan.gc.ca/sites/oee.nrcan.gc.ca/files/pdf/publications/industrial/mining/open- pit/Open-Pit-Mines-1939B-Eng.pdf (Accessed 25 th June 2015) (2005).
- Gough, C. & Upham, P. Biomass energy with carbon capture and storage (BECCS): a review. Tyndall Centre for Climate Change Research, Working Paper 147. 40pp. Available at: http://www.tyndall.ac.uk/sites/default/files/twp147.pdf. (Accessed 25th June 2015) (2010).
- Dufossé, K., Drewer, J., Gabrielle, B. & Drouet, J.-L. Effects of a 20-year old Miscanthus × giganteus stand and its removal on soil characteristics and greenhouse gas emissions. Biomass Bioenergy 69, 198-210 (2014).