Residual fossil CO2 emissions in 1.5–2 °C pathways
Nature Climate Change
https://doi.org/10.1038/S41558-018-0198-6Abstract
The Paris Agreement-which is aimed at holding global warming well below 2 °C while pursuing efforts to limit it below 1.5 °C-has initiated a bottom-up process of iteratively updating nationally determined contributions to reach these longterm goals. Achieving these goals implies a tight limit on cumulative net CO 2 emissions, of which residual CO 2 emissions from fossil fuels are the greatest impediment. Here, using an ensemble of seven integrated assessment models (IAMs), we explore the determinants of these residual emissions, focusing on sector-level contributions. Even when strengthened pre-2030 mitigation action is combined with very stringent long-term policies, cumulative residual CO 2 emissions from fossil fuels remain at 850-1,150 GtCO 2 during 2016-2100, despite carbon prices of US$130-420 per tCO 2 by 2030. Thus, 640-950 GtCO 2 removal is required for a likely chance of limiting end-of-century warming to 1.5 °C. In the absence of strengthened pre-2030 pledges, long-term CO 2 commitments are increased by 160-330 GtCO 2 , further jeopardizing achievement of the 1.5 °C goal and increasing dependence on CO 2 removal.
References (86)
- Matthews, H. D., Gillett, N. P., Stott, P. A. & Zickfeld, K. The proportionality of global warming to cumulative carbon emissions. Nature 459, 829-832 (2009).
- Matthews, H. D. & Caldeira, K. Stabilizing climate requires near-zero emissions. Geophys. Res. Lett. 35, 1-5 (2008).
- Meinshausen, M. et al. Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature 458, 1158-1162 (2009).
- Clarke, L. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) Ch. 6 (IPCC, Cambridge Univ. Press, 2014).
- Rogelj, J. et al. Energy system transformations for limiting end-of-century warming to below 1.5 °C. Nat. Clim. Change 5, 519-527 (2015).
- Jackson, R. B. et al. Warning signs for stabilizing global CO 2 emissions. Environ. Res. Lett. 12, 110202 (2017).
- Rogelj, J. et al. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534, 631-639 (2016).
- Iyer, G. C. et al. The contribution of Paris to limit global warming to 2 °C. Environ. Res. Lett. 10, 125002 (2015).
- Fujimori, S. et al. Implication of Paris Agreement in the context of long-term climate mitigation goals. SpringerPlus 5, 1620 (2016).
- Rogelj, J. et al. Understanding the origin of Paris Agreement emission uncertainties. Nat. Commun. 8, e15748 (2017).
- Smith, P. et al. Biophysical and economic limits to negative CO 2 emissions. Nat. Clim. Change 6, 42-50 (2015).
- Kriegler, E. et al. The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies. Clim. Change 123, 353-367 (2014).
- Krey, V., Luderer, G., Clarke, L. & Kriegler, E. Getting from here to there-energy technology transformation pathways in the EMF27 scenarios. Clim. Change 123, 369-382 (2014).
- Anderson, K. & Peters, G. The trouble with negative emissions. Science 354, 182-183 (2016).
- Riahi, K. et al. Locked into Copenhagen pledges-implications of short-term emission targets for the cost and feasibility of long-term climate goals. Technol. Forecast. Soc. Change 90, 8-23 (2015).
- Kriegler, E. et al. What does the 2 °C target imply for a global climate agreement in 2020? The LIMITS study on Durban Platform scenarios. Clim. Change Econ. 04, 1340008 (2013).
- Rogelj, J. et al. Scenarios towards limiting global mean temperature increase below 1.5 °C. Nat. Clim. Change 8, 325-332 (2018).
- Davis, S. J., Caldeira, K. & Matthews, H. D. Future CO 2 emissions and climate change from existing energy infrastructure. Science 329, 1330-1333 (2010).
- Rogelj, J., Meinshausen, M. & Knutti, R. Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nat. Clim. Change 2, 248-253 (2012).
- Meinshausen, M., Raper, S. C. B. & Wigley, T. M. L. Emulating coupled atmosphere-ocean and carboncycle models with a simpler model, MAGICC6-part 1: model description and calibration. Atmos. Chem. Phys. 11, 1417-1456 (2011).
- Le Quéré, C. et al. Global carbon budget 2016. Earth Syst. Sci. Data 8, 605-649 (2016).
- Millar, R. J. et al. Emission budgets and pathways consistent with limiting warming to 1.5 °C. Nat. Geosci. 10, 741-747 (2017).
- Hoesly, R. M. et al. Historical (1750-2014) anthropogenic emissions of reactive gases and aerosols from the Community Emission Data System (CEDS). Geosci. Model Dev. 11, 369-408 (2018).
- Williams, J. H. et al. The technology path to deep greenhouse gas emissions cuts by 2050: the pivotal role of electricity. Science 335, 53-59 (2012).
- Luderer, G. et al. The role of renewable energy in climate stabilization: results from the EMF27 scenarios. Clim. Change 123, 427-441 (2014).
- Energy Technology Perspectives 2017: Catalyzing Energy Technology Transformations (International Energy Agency, 2017).
- van Vuuren, D. P. et al. Carbon budgets and energy transition pathways. Environ. Res. Lett. 11, 075002 (2016).
- Edelenbosch, O. Y. et al. Decomposing passenger transport futures: comparing results of global integrated assessment models. Transp. Res. D Transp. Environ. 55, 281-293 (2017).
- Edelenbosch, O. Y. al. Comparing projections of industrial energy demand and greenhouse gas emissions in long-term energy models. Energy 122, 701-710 (2017).
- Macmillan Publishers Limited, part of Springer Nature. All rights reserved. NATuRE CLIMATE CHANGE | VOL 8 | JULY 2018 | 626-633 | www.nature.com/natureclimatechange
- Creutzig, F. Evolving narratives of low-carbon futures in transportation. Transp. Rev. 36, 341-360 (2016).
- Kermeli, K., Graus, W. H. J. & Worrell, E. Energy efficiency improvement potentials and a low energy demand scenario for the global industrial sector. Energy Effic. 7, 987-1011 (2014).
- Sugiyama, M. Climate change mitigation and electrification. Energy Policy 44, 464-468 (2012).
- Global Electric Vehicle Outlook 2016 (International Energy Agency, 2016).
- Nykvist, B. & Nilsson, M. Rapidly falling costs of battery packs for electric vehicles. Nat. Clim. Change 5, 329-332 (2015).
- Creutzig, F. et al. Transport: a roadblock to climate change mitigation? Science 350, 911-912 (2015).
- Fischedick, M. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) Ch. 10 (IPCC, Cambridge Univ. Press, 2014).
- Banerjee, R. et al. in Global Energy Assessment-Toward a Sustainable Future (eds Johansson, T. B. et al.) Ch. 8 (International Institute for Applied Systems Analysis, Cambridge Univ. Press, 2012).
- Creutzig, F. et al. Bioenergy and climate change mitigation: an assessment. GCB Bioenergy 7, 916-944 (2015).
- Popp, A. et al. Land-use transition for bioenergy and climate stabilization: model comparison of drivers, impacts and interactions with other land use based mitigation options. Clim. Change 123, 495-509 (2014).
- Rogelj, J., McCollum, D. L., Reisinger, A., Meinshausen, M. & Riahi, K. Probabilistic cost estimates for climate change mitigation. Nature 493, 79-83 (2013).
- Luderer, G. et al. Economic mitigation challenges: how further delay closes the door for achieving climate targets. Environ. Res. Lett. 8, 034033 (2013).
- Luderer, G., Bertram, C., Calvin, K., De Cian, E. & Kriegler, E. Implications of weak near-term climate policies on long-term mitigation pathways. Clim. Change 136, 127-140 (2016).
- Clarke, L. et al. International climate policy architectures: overview of the EMF-22 International Scenarios. Energy Econ. 31, S64-S81 (2009).
- Rockström, J. et al. A roadmap for rapid decarbonization. Science 355, 1269-1271 (2017).
- Fuss, S. et al. Betting on negative emissions. Nat. Clim. Change 4, 850-853 (2014).
- Larkin, A., Kuriakose, J., Sharmina, M. & Anderson, K. What if negative emission technologies fail at scale? Implications of the Paris Agreement for big emitting nations. Clim. Policy 17, 1-25 (2017).
- Heck, V., Gerten, D., Lucht, W. & Popp, A. Biomass-based negative emissions difficult to reconcile with planetary boundaries. Nat. Clim. Change 8, 151-155 (2018).
- Rose, S. K. et al. Bioenergy in energy transformation and climate management. Clim. Change 123, 477-493 (2013).
- den Boer, E., Aarnink, S., Kleiner, F. & Pagenkopf, J. Zero Emissions Trucks: An Overview of State-of-the-art Technologies and Their Potential (CE Delft, 2013).
- Kuramochi, T., Ram¡rez, A., Turkenburg, W. & Faaij, A. Comparative assessment of CO2 capture technologies for carbon-intensive industrial processes. Prog. Energy Combust. Sci. 38, 87-112 (2012).
- Sterner, M. Bioenergy and Renewable Power Methane in Integrated 100% Renewable Energy Systems. Limiting Global Warming by Transforming Energy Systems. Thesis, Univ. Kassel (2009).
- Farmer, J. D., Hepburn, C., Mealy, P. & Teytelboym, A. A third wave in the economics of climate change. Environ. Resour. Econ. 62, 329-357 (2015).
- Luderer, G. et al. Deep Decarbonisation Towards 1.5 °C -2 °C Stabilisation: Policy Findings from the ADVANCE Project (ADVANCE consortium, Potsdam Institute for Climate Impact Research, 2016).
- Pietzcker, R. C. et al. System integration of wind and solar power in integrated assessment models: a cross-model evaluation of new approaches. Energy Econ. 64, 583-599 (2017).
- Luderer, G. et al. Assessment of wind and solar power in global low-carbon energy scenarios: an introduction. Energy Econ. 64, 542-551 (2017).
- Vrontisi, Z. et al. Enhancing global climate policy ambition towards a 1.5 °C stabilization: a short-term multi-model assessment. Environ. Res. Lett. 13, 044039 (2018).
- Fujimori, S., Masui, T. & Matsuoka, Y. Development of a global computable general equilibrium model coupled with detailed energy end-use technology . Appl. Energy 128, 296-306 (2014).
- Fujimori, S., Masui, T. & Matsuoka, Y. AIM/CGE [Basic] Manual Discussion Paper No. 2012-01 (Center for Social and Environmental Systems Research, NIES, 2012).
- Fujimori, S., Hasegawa, T., Masui, T. & Takahashi, K. Land use representation in a global CGE model for long-term simulation: CET vs. logit functions. Food Secur. 6, 685-699 (2014).
- Fawcett, A. A. et al. Can Paris pledges avert severe climate change? Science 350, 1168-1169 (2015).
- McJeon, H. et al. Limited impact on decadal-scale climate change from increased use of natural gas. Nature 514, 482-485 (2014).
- Wise, M. et al. Implications of limiting CO 2 concentrations for land use and energy. Science 324, 1183-1186 (2009).
- Edmonds, J., Clarke, J., Dooley, J., Kim, S. H. & Smith, S. J.. Stabilization of CO 2 in a B2 world: insights on the roles of carbon capture and disposal, hydrogen, and transportation technologies. Energy Econ. 26, 517-537 (2004).
- Sands, R. D. & Leimbach, M. Modeling agriculture and land use in an integrated assessment framework. Clim. Change 56, 185-210 (2003).
- Edmonds, J. & Reilly, J. Global energy and CO 2 to the year 2050. Energy J. 4, 21-37 (1983).
- Kim, S. H., Edmonds, J., Lurz, J., Smith, S. J. & Wise, M. The objECTS framework for integrated assessment: hybrid modeling of transportation. Energy J. 27, 63-91 (2006).
- Stehfest, E., van Vuuren, D., Bouwman, L. & Kram, T. Integrated Assessment of Global Environmental Change with IMAGE 3.0: Model Description and Policy Applications (Netherlands Environmental Assessment Agency (PBL), 2014).
- Krey, V. et al. MESSAGE-GLOBIOM 1.0 Documentation (International Institute for Applied Systems Analysis, 2016).
- Fricko, O. et al. The marker quantification of the Shared Socioeconomic Pathway 2: a middle-of-the-road scenario for the 21st century. Glob. Environ. Change 42, 251-267 (2017).
- Riahi, K., Grübler, A. & Nakicenovic, N. Scenarios of long-term socio- economic and environmental development under climate stabilization. Technol. Forecast. Soc. Change 74, 887-935 (2007).
- Riahi, K. et al. in Global Energy Assessment-Toward a Sustainable Future (eds Johansson, T. B. et al.) Ch. 17 (International Institute for Applied Systems Analysis, Cambridge Univ. Press, 2012).
- Messner, S. & Strubegger, M. User's Guide for MESSAGE III (International Institute for Applied Systems Analysis, 1995).
- Messner, S. & Schrattenholzer, L. MESSAGE-MACRO: linking an energy supply model with a macroeconomic module and solving it iteratively. Energy 25, 267-282 (2000).
- Havlik, P. et al. Global land-use implications of first and second generation biofuel targets. Energy Policy 39, 5690-5702 (2011).
- Lotze-Campen, H. et al. Impacts of increased bioenergy demand on global food markets: an AgMIP economic model intercomparison. Agric. Econ. 45, 103-116 (2014).
- Kindermann, G. E., Obersteiner, M., Rametsteiner, E. & McCallum, I. Predicting the deforestation-trend under different carbon-prices. Carbon Balance Manag. 1, 15 (2006).
- Gusti, M. An algorithm for simulation of forest management decisions in the global forest model. Shtuchn. Intel. 4, 45-49 (2010).
- Amann, M. et al. Cost-effective control of air quality and greenhouse gases in Europe: modeling and policy applications. Environ. Model. Softw. 26, 1489-1501 (2011).
- Rao, S. et al. Better air for better health: forging synergies in policies for energy access, climate change and air pollution. Glob. Environ. Change 23, 1122-1130 (2013).
- Global Mitigation of Non-CO 2 Greenhouse Gases: 2010-2030 Report EPA-430-R-13-011 (EPA, 2013).
- Lotze-Campen, H. et al. Global food demand, productivity growth, and the scarcity of land and water resources: a spatially explicit mathematical programming approach. Agric. Econ. 39, 325-338 (2008).
- Popp, A. et al. Land-use protection for climate change mitigation. Nat. Clim. Change 4, 1095-1098 (2014).
- Strefler, J., Luderer, G., Aboumahboub, T. & Kriegler, E. Economic impacts of alternative greenhouse gas emission metrics: a model-based assessment. Clim. Change 125, 319-331 (2014).
- Bosetti, V., Carraro, C., Galeotti, M., Massetti, E. & Tavoni, M. WITCH-a world induced technical change hybrid model. Energy J. 27, 13-37 (2006).
- Emmerling, J. et al. The WITCH 2016 Model-Documentation and Implementation of the Shared Socioeconomic Pathways Working Paper No.42.2016 (Fondazione Eni Enrico Mattei, 2016).