Academia.eduAcademia.edu

Outline

Causally continuous spacetimes

1974, Communications in Mathematical Physics

https://doi.org/10.1007/BF01646350

Abstract

Causally continuous general relativistic spacetimes are defined and analyzed. In a causally continuous spacetime, the past and future of a local observer behave continuously under small perturbations of the metric or small changes in his location. Causally simple spacetimes are causally continuous; causally continuous spacetimes are causally stable. Possible reasons for taking causal continuity as a basic postulate in macrophysics are briefly discussed.

References (15)

  1. Bishop, R. L., Goldberg, S. I. : Tensor analysis on manifolds, New York: MacMillan 1968
  2. Budic, R., Sachs, R. K. : Set causality in general relativity (preprint, 1973)
  3. Carter, B.: Phys. Rev. 174, 1559 (1968)
  4. Carter, B. :Gen. Rel. Grav. 1, 349 (1971)
  5. Geroch, R.: J. Math. Phys. 11,437 (1970)
  6. Geroch, R., Kronheimer, E. H., Penrose, R.: Proc. Roy. Soc. A 327, 545 (1972)
  7. Hawking, S.: Proc. Roy. Soc. A 31t8, 433 (1968)
  8. Hawking, S, Penrose, R. : Proc. Roy. Soc. A 314, 529 (1970)
  9. Hawking, S., Ellis, G. F.R.: The large scale structure of space-time. Cambridge Uni- versity Press, 1973
  10. Kronheimer, E. H., Penrose, R. : Proc. Cambridge Phil. Soc. 63, 481 (1967)
  11. Penrose, R.: Proc. Roy. Soc. A 284, 159 (1965)
  12. Penrose, R.: The Structure of Spacetime. In: deWitt, C.M., Wheeler, J.A. (Eds.): Batelle recontres. New York: Benjamin, 1968
  13. Penrose, R. : Techniques of differential topology in general relativity. Am. Math. Soc. Colloq. Publ., 1973
  14. Seifert, H.: Gem Rel. Gray. I, 3, 247 (1971) t 5. Woodhouse, N. M. J. :J. Math. Phys. 14, 4, 495 (1973) S. W. Hawking Institute of Astronomy University of Cambridge Cambridge, U.K.
  15. R. K. Sachs DAMTP University of Cambridge and Departments of Mathematics and Physics University of California at Berkeley Berkeley, Cal. 94720, USA