Causally continuous spacetimes
1974, Communications in Mathematical Physics
https://doi.org/10.1007/BF01646350Abstract
Causally continuous general relativistic spacetimes are defined and analyzed. In a causally continuous spacetime, the past and future of a local observer behave continuously under small perturbations of the metric or small changes in his location. Causally simple spacetimes are causally continuous; causally continuous spacetimes are causally stable. Possible reasons for taking causal continuity as a basic postulate in macrophysics are briefly discussed.
References (15)
- Bishop, R. L., Goldberg, S. I. : Tensor analysis on manifolds, New York: MacMillan 1968
- Budic, R., Sachs, R. K. : Set causality in general relativity (preprint, 1973)
- Carter, B.: Phys. Rev. 174, 1559 (1968)
- Carter, B. :Gen. Rel. Grav. 1, 349 (1971)
- Geroch, R.: J. Math. Phys. 11,437 (1970)
- Geroch, R., Kronheimer, E. H., Penrose, R.: Proc. Roy. Soc. A 327, 545 (1972)
- Hawking, S.: Proc. Roy. Soc. A 31t8, 433 (1968)
- Hawking, S, Penrose, R. : Proc. Roy. Soc. A 314, 529 (1970)
- Hawking, S., Ellis, G. F.R.: The large scale structure of space-time. Cambridge Uni- versity Press, 1973
- Kronheimer, E. H., Penrose, R. : Proc. Cambridge Phil. Soc. 63, 481 (1967)
- Penrose, R.: Proc. Roy. Soc. A 284, 159 (1965)
- Penrose, R.: The Structure of Spacetime. In: deWitt, C.M., Wheeler, J.A. (Eds.): Batelle recontres. New York: Benjamin, 1968
- Penrose, R. : Techniques of differential topology in general relativity. Am. Math. Soc. Colloq. Publ., 1973
- Seifert, H.: Gem Rel. Gray. I, 3, 247 (1971) t 5. Woodhouse, N. M. J. :J. Math. Phys. 14, 4, 495 (1973) S. W. Hawking Institute of Astronomy University of Cambridge Cambridge, U.K.
- R. K. Sachs DAMTP University of Cambridge and Departments of Mathematics and Physics University of California at Berkeley Berkeley, Cal. 94720, USA