Academia.eduAcademia.edu

Outline

CLASSY: A Conversational Aware Suggestion System

2019, Proceedings

https://doi.org/10.3390/PROCEEDINGS2019031040

Abstract

Over the last few years, pervasive systems have seen some interesting development. Nevertheless, human–human interaction can also take advantage of those systems by using their ability to perceive the surrounding environment. In this work, we have developed a pervasive system – named CLASSY – that is aware of the conversational context and suggests documents potentially useful to the users based on an Information Retrieval system, and proposed a new scoring approach that uses semantics and distance based on proximity data in order to classify the relationship between tokens.

References (18)

  1. Saha, D.; Mukherjee, A. Pervasive computing: a paradigm for the 21st century. Computer 2003, 36, 25-31, doi:10.1109/mc.2003.1185214.
  2. Wong, F.L.; Stajano, F. Location Privacy in Bluetooth. In Security and Privacy in Ad-Hoc and Sensor Networks; Springer: Berlin/Heidelberg, Germany, 2005; pp. 176-188, doi:10.1007/11601494_15.
  3. Satyanarayanan, M. Pervasive computing: vision and challenges. IEEE Pers. Commun. 2001, 8, 10-17, doi:10.1109/98.943998.
  4. Garlan, D.; Siewiorek, D.; Smailagic, A.; Steenkiste, P. Project Aura: toward distraction-free pervasive computing. IEEE Pervasive Comput. 2002, 1, 22-31, doi:10.1109/mprv.2002.1012334.
  5. Jiang, P.; Xia, H.; He, Z.; Wang, Z. Design of a Water Environment Monitoring System Based on Wireless Sensor Networks. Sensors 2009, 9, 6411-6434, doi:10.3390/s90806411.
  6. Farrar, C.; James, G.J., III. System Identification from ambient vibration measurements on a bridge. J. Sound Vib. 1997, 205, 1-18, doi:10.1006/jsvi.1997.0977.
  7. Chen, J.; Kam, A.H.; Zhang, J.; Liu, N.; Shue, L. Bathroom Activity Monitoring Based on Sound. In Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2005; pp. 47-61, doi:10.1007/11428572_4.
  8. Martínez, E.A.; Cruz, R.; Favela, J. Estimating User Location in a WLAN Using Backpropagation Neural Networks. In Advances in Artificial Intelligence-IBERAMIA 2004; Springer: Berlin/Heidelberg, Germany, 2004; pp. 737-746, doi:10.1007/978-3-540-30498-2_74.
  9. Chaves, A.P.; Gerosa, M.A. How should my chatbot interact? A survey on human-chatbot interaction design. arXiv 2019, arXiv:1904.02743.
  10. Bernsen, N.O.; Dybkjaer, H.; Dybkjaer, L. Cooperativity in human-machine and human-human spoken dialogue. Discourse Process. 1996, 21, 213-236, doi:10.1080/01638539609544956.
  11. Isbister, K.; Nakanishi, H.; Ishida, T.; Nass, C. Helper agent. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems-CHI '00, The Hague, The Netherlands, 1-6 April 2000; ACM Press: New York, NY, USA, 2000, doi:10.1145/332040.332407.
  12. Popescu-Belis, A.; Boertjes, E.; Kilgour, J.; Poller, P.; Castronovo, S.; Wilson, T.; Jaimes, A.; Carletta, J. The AMIDA Automatic Content Linking Device: Just-in-Time Document Retrieval in Meetings. In Machine Learning for Multimodal Interaction; Springer: Berlin/Heidelberg, Germany, 2008; pp. 272-283, doi:10.1007/978-3-540-85853-9_25.
  13. Habibi, M.; Popescu-Belis, A. Keyword Extraction and Clustering for Document Recommendation in Conversations. IEEE/ACM Trans. Audio Speech Lang. Process. 2015, 23, 746-759, doi:10.1109/taslp.2015.2405482.
  14. Tate, K.V.; Nandwalkar, B.R. Document Recommendation Using Keyword Extraction for Meeting Analysis. Int. J. Comput. Sci. Inf. Technol. 2016, 7, 1763-1766.
  15. Philips, L. Hanging on the Metaphone. Comput. Lang. Mag. 1990, 7, 39-44.
  16. Benítez-Guijarro, A.; Callejas, Z.; Noguera, M.; Benghazi, K. Introducing Computational Semantics for Natural Language Understanding in Conversational Nutrition Coaches for Healthy Eating. Proceedings 2018, 2, 506, doi:10.3390/proceedings2190506.
  17. Harris, Z. Mathematical Structures of Language; John Wiley and Son: Hoboken, NJ, USA, 1968.
  18. Antunes, M.; Gomes, D.; Aguiar, R.L. Towards IoT data classification through semantic features. Future Gener. Comput. Syst. 2018, 86, 792-798, doi:10.1016/j.future.2017.11.045.