Academia.eduAcademia.edu

Outline

Interdigitation of Lipids Induced by Membrane–Active Proteins

2019, The Journal of Membrane Biology

https://doi.org/10.1007/S00232-019-00072-7

Abstract

The membrane-active protein Nogo-66 is found to induce interdigitation in dimyristoylphosphocholine membranes. Extensive molecular dynamics simulations have been employed to probe the interactions of Nogo-66 with these model membranes. This phase change happens when the temperature is close to the main transition temperature of the membrane (T m) and only in the presence of the protein. No similar interdigitation of the membrane lipids was observed temperatures well above T m in the presence of the protein. In addition, in protein-free simulations, no interdigitation of the membrane lipids was found both at temperatures near or well above T m indicating that the observed effect is caused by the interactions of Nogo-66 with the membrane. Analysis of the simulations suggest protein-membrane interactions, even if transient, alter the lifetimes of lipid head defects and can potentially alter the effective T m and cause interdigitation. This study emphasize the importance of membrane-active proteins and their interactions with membranes leading to phase transitions which would affect other membrane-related processes such as domain formation.

References (99)

  1. Akabori K, Nagle JF (2015) Structure of the DMPC lipid bilayer ripple phase. Soft Matter 11(5):918-926
  2. Almeida C, Lamazière A, Filleau A, Corvis Y, Espeau P, Ayala- Sanmartin J (2016) Membrane re-arrangements and rippled phase stabilisation by the cell penetrating peptide penetratin. Biochim Biophys Acta 1858(11):2584-2591
  3. Aoun B, Pellegrini E, Trapp M, Natali F, Cantú L, Brocca P, Gerelli Y, Demé B, Koza MM, Johnson M et al (2016) Direct compari- son of elastic incoherent neutron scattering experiments with molecular dynamics simulations of dmpc phase transitions. Eur Phys J E 39(4):48
  4. Baoukina S, Tielemanm DP (2015) Computer simulations of phase separation in lipid bilayers and monolayers. Methods in mem- brane lipids. Springer, New York, pp 307-322
  5. Baul U, Vemparala S (2015) Membrane-bound conformations of antimicrobial agents and their modes of action, vol 22. Advances in planar lipid bilayers and liposomes. Elsevier, Amsterdam, pp 97-128
  6. Baul U, Vemparala S (2017) Influence of lipid composition of model membranes on methacrylate antimicrobial polymer-membrane interactions. Soft Matter 13(41):7665-7676
  7. Best RB, Zhu X, Shim J, Lopes PEM, Mittal J, Feig M, MacKerell AD Jr (2012) Optimization of the additive charmm all-atom protein force field targeting improved sampling of the back- bone , and side-chain 1 and 2 dihedral angles. J Chem Theory Comput 8(9):3257-3273
  8. Bigay J, Casella J-F, Drin G, Mesmin B, Antonny B (2005) Arfgap1 responds to membrane curvature through the folding of a lipid packing sensor motif. EMBO J 24(13):2244-2253
  9. Cevc G, Marsh D (1987) Phospholipid bilayers: physical principles and models. Wiley, Hoboken
  10. Chen C-M, Lubensky TC, MacKintosh FC (1995) Phase transitions and modulated phases in lipid bilayers. Phys Rev E 51(1):504
  11. Chen W, Duša F, Witos J, Ruokonen S-K, Wiedmer SK (2018) Deter- mination of the main phase transition temperature of phospho- lipids by nanoplasmonic sensing. Sci Rep 8(1):14815
  12. Choubey A, Nomura K, Kalia RK, Nakano A, Vashishta P (2014) Small interfering ribonucleic acid induces liquid-to-ripple phase transformation in a phospholipid membrane. Appl Phys Lett 105(11):113702
  13. Cui H, Lyman E, Voth GA (2011) Mechanism of membrane curva- ture sensing by amphipathic helix containing proteins. Biophys J 100(5):1271-1279
  14. Darden T, York D, Pedersen L (1993) Particle mesh ewald: an n log (n) method for ewald sums in large systems. J Chem Phys 98(12):10089-10092
  15. de Vries AH, Serge Y, Mark AE, Marrink SJ (2005) Molecular structure of the lecithin ripple phase. Proc Natl Acad Sci 102(15):5392-5396
  16. Debnath A, Thakkar FM, Maiti PK, Kumaran V, Ayappa KG (2014) Laterally structured ripple and square phases with one and two dimensional thickness modulations in a model bilayer system. Soft Matter 10(38):7630-7637
  17. Destainville N, Schmidt TH, Lang T (2016) Where biology meets physics: a converging view on membrane microdomain dynam- ics, vol 77. Current topics in membranes. Elsevier, Amsterdam, pp 27-65
  18. Di Pisa M, Chassaing G, Swiecicki J-M (2014) Translocation mecha- nism (s) of cell-penetrating peptides: biophysical studies using artificial membrane bilayers. Biochemistry 54(2):194-207
  19. Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA (2004) Pdb2pqr: an automated pipeline for the setup of poisson-boltzmann elec- trostatics calculations. Nucl Acids Res 32(suppl 2):W665-W667
  20. Drin G, Antonny B (2010) Amphipathic helices and membrane curva- ture. FEBS Lett 584(9):1840-1847
  21. Edidin M (2003) The state of lipid rafts: from model membranes to cells. Annu Rev Biophys Biomol Struct 32(1):257-283
  22. Epand RM, Walker C, Epand RF, Magarvey NA (2016) Molecular mechanisms of membrane targeting antibiotics. Biochim Biophys Acta 1858(5):980-987
  23. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh ewald method. J Chem Phys 103(19):8577-8593
  24. Feller FSE, Zhang Y, Pastor RW, Brooks BR (1995) Constant pressure molecular dynamics simulation: the langevin piston method. J Chem Phys 103(11):4613-4621
  25. Feng ZV, Granick S, Gewirth AA (2004) Modification of a sup- ported lipid bilayer by polyelectrolyte adsorption. Langmuir 20(20):8796-8804
  26. Fusco G, Sanz-Hernandez M, De Simone A (2018) Order and disor- der in the physiological membrane binding of α-synuclein. Curr Opin Struct Biol 48:49-57
  27. Gautier R, Bacle A, Tiberti ML, Fuchs PF, Vanni S, Antonny B (2018) Packmem: a versatile tool to compute and visualize interfacial packing defects in lipid bilayers. Biophys J 115(3):436-444
  28. Giorgino T (2014) Computing 1-d atomic densities in macromolecular simulations: the density profile tool for vmd. Comput Phys Com- mun 185(1):317-322
  29. Gray E, Karslake J, Machta BB, Veatch SL (2013) Liquid general anes- thetics lower critical temperatures in plasma membrane vesicles. Biophys J 105(12):2751-2759
  30. Griffn KL, Cheng C-Y, Smith EA, Dea PK (2010) Effects of pentanol isomers on the phase behavior of phospholipid bilayer mem- branes. Biophys Chem 152(1-3):178-183
  31. Guixa-González R, Rodriguez-Espigares I, Ramírez-Anguita JM, Carrió-Gaspar P, Martinez-Seara H, Giorgino T, Selent J (2014) Membplugin: studying membrane complexity in vmd. Bioinfor- matics 30(10):1478-1480
  32. Harrison PL, Heath GR, Johnson BRG, Abdel-Rahman MA, Strong PN, Evans SD, Miller K (2016) Phospholipid dependent mecha- nism of smp24, an α-helical antimicrobial peptide from scorpion venom. Biochim Biophys Acta 1858(11):2737-2744
  33. Heller WT, Waring AJ, Lehrer RI, Harroun TA, Weiss TM, Yang L, Huang HW (2000) Membrane thinning effect of the β-sheet anti- microbial protegrin. Biochemistry 39(1):139-145
  34. Humphrey W, Dalke A, Schulten K (1996) VMD-visual molecular dynamics. J Mol Graph 14:33-38
  35. Jain MK, White HB (1977) Long-range order in biomembranes, vol 15. Advances in lipid research. Elsevier, Amsterdam, pp 1-60
  36. Jain MK, Wu NM (1977) Effect of small molecules on the dipalmitoyl lecithin liposomal bilayer: III. Phase transition in lipid bilayer. J Membr Biol 34(1):157-201
  37. Jo S, Kim T, Iyer VG, Im W (2008) Charmm-gui: a web-based graphi- cal user interface for charmm. J Comput Chem 29(11):1859-1865
  38. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein Michael L (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926-935
  39. Kaiser H-J, Lingwood D, Levental I, Sampaio JL, Kalvodova L, Rajen- dran L, Simons K (2009) Order of lipid phases in model and plasma membranes. Proc Natl Acad Sci 106(39):16645-16650
  40. Khakbaz P, Klauda JB (2018) Investigation of phase transitions of saturated phosphocholine lipid bilayers via molecular dynamics simulations. Biochim Biophys Acta 180(8):1489-1501
  41. Koukos PI, Glykos NM (2013) Grcarma: a fully automated task-ori- ented interface for the analysis of molecular dynamics trajecto- ries. J Comput Chem 34(26):2310-2312
  42. Kranenburg M, Smit B (2005) Phase behavior of model lipid bilayers. J Phys Chem B 109(14):6553-6563
  43. Kranenburg M, Venturoli M, Smit B (2003) Phase behavior and induced interdigitation in bilayers studied with dissipative parti- cle dynamics. J Phys Chem B 107(41):11491-11501
  44. Kranenburg M, Vlaar M, Smit B (2004) Simulating induced interdigita- tion in membranes. Biophys J 87(3):1596-1605
  45. Kučerka N, Nieh M-P, Katsaras J (2011) Fluid phase lipid areas and bilayer thicknesses of commonly used phosphatidylcho- lines as a function of temperature. Biochim Biophys Acta 1808(11):2761-2771
  46. Lamaziére A, Wolf C, Lambert O, Chassaing G, Trugnan G, Ayala- Sanmartin J (2008) The homeodomain derived peptide penetra- tin induces curvature of fluid membrane domains. PLoS ONE 3(4):e1938
  47. Lamaziére A, Chassaing G, Trugnan G, Ayala-Sanmartin J (2009) Tubular structures in heterogeneous membranes induced by the cell penetrating peptide penetratin. Commun Integr Biol 2(3):223-224
  48. Laner M, Hünenberger PH (2015) Effect of methanol on the phase- transition properties of glycerol-monopalmitate lipid bilayers investigated using molecular dynamics simulations in quest of the biphasic effect. J Mol Graph Model 55:85-104
  49. Lee AG (2003) Lipid-protein interactions in biological membranes: a structural perspective. Biochim Biophys Acta 1612(1):1-40
  50. Lee M-T, Chen F-Y, Huang HW (2004) Energetics of pore forma- tion induced by membrane active peptides. Biochemistry 43(12):3590-3599
  51. Lee M-T, Sun T-L, Hung W-C, Huang HW (2013) Process of induc- ing pores in membranes by melittin. Proc Natl Acad Sci 110(35):14243-14248
  52. Lenz O, Schmid F (2007) Structure of symmetric and asymmetric "rip- ple" phases in lipid bilayers. Phys Rev Lett 98(5):058104
  53. Lewis BA, Engelman DM (1983) Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles. J Mol Biol 166(2):211-217
  54. Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327(5961):40-50
  55. Lubensky TC, MacKintosh FC (1993) Theory of "ripple" phases of lipid bilayers. Phys Rev Lett 71(10):1565
  56. Lyman E, Hsieh CL, Eggeling C (2018) From dynamics to membrane organization: experimental breakthroughs occasion a "modeling manifesto". Biophys J Mabrey M, Sturtevant JM (1976) Investigation of phase transitions of lipids and lipid mixtures by sensitivity differential scanning calorimetry. Proc Natl Acad Sci 73(11):3862-3866
  57. MacKerell AD Jr, Bashford D, Bellott MLDR, Dunbrack RL Jr, Evan- seck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S et al (1998) All-atom empirical potential for molecular modeling and dynam- ics studies of proteins. J Phys Chem B 102(18):3586-3616
  58. Marrink SJ, De Vries AH, Tieleman DP (2009) Lipids on the move: simulations of membrane pores, domains, stalks, and curves. Biochim Biophys Acta 1788(1):149-168
  59. Martyna GJ, Tobias DJ, Klein ML (1994) Constant pressure molecular dynamics algorithms. J Chem Phys 101(5):4177-4189
  60. Mavromoustakos T, Chatzigeorgiou P, Koukoulitsa C, Durdagi S (2011) Partial interdigitation of lipid bilayers. Int J Quantum Chem 111(6):1172-1183
  61. McIntosh TJ, McDaniel RV, Simon SA (1983) Induction of an inter- digitated gel phase in fully hydrated phosphatidylcholine bilay- ers. Biochim Biophys Acta 731(1):109-114
  62. McIntosh TJ, Lin H, Li S, Huang C (2001) The effect of ethanol on the phase transition temperature and the phase structure of monounsaturated phosphatidylcholines. Biochim Biophys Acta 1510(1):219-230
  63. McMahon HT, Gallop JL (2005) Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438(7068):590
  64. Meck A, Lee D-K, Ramamoorthy A, Orr BG (2005) Membrane thinning due to antimicrobial peptide binding: an atomic force microscopy study of msi-78 in lipid bilayers. Biophys J 89(6):4043-4050
  65. Mizuno N, Varkey J, Kegulian NC, Hegde BG, Naiqian C, Ralf L, Steven Alasdair C (2012) Remodeling of lipid vesicles into cylin- drical micelles by α-synuclein in an extended α-helical confor- mation. J Biol Chem 287(35):29301-29311
  66. Nagle JF, Wilkinson DA (1978) Lecithin bilayers density measurement and molecular interactions. Biophys J 23(2):159-175
  67. Nicovich PR, Kwiatek JM, Ma Y, Benda A, Gaus K (2018) Fscs reveals the complexity of lipid domain dynamics in the plasma mem- brane of live cells. Biophys J 114(12):2855-2864
  68. Ouberai MM, Wang J, Swann MJ, Galvagnion C, Guilliams T, Dob- son CM, Welland ME (2013) α-Synuclein senses lipid packing defects and induces lateral expansion of lipids leading to mem- brane remodeling. J Biol Chem 288:20883-20895
  69. O'Leary EI, Jiang Z, Strub MP, Lee JC (2018) Effects of phosphati- dylcholine membrane fluidity on the conformation and aggre- gation of n-terminally acetylated -synuclein. J Biol Chem 293(28):11195-11205
  70. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chi- pot C, Skeel RD, Kalé L, Schulten K (2005) Scalable molecular dynamics with namd. J Comput Chem 26(16):1781-1802
  71. Qian S, Heller WT (2011) Peptide-induced asymmetric distribution of charged lipids in a vesicle bilayer revealed by small-angle neutron scattering. J Phys Chem B 115(32):9831-9837
  72. Ramalho JPP, Gkeka P, Sarkisov L (2011) Structure and phase trans- formations of dppc lipid bilayers in the presence of nanoparticles: insights from coarse-grained molecular dynamics simulations. Langmuir 27(7):3723-3730
  73. Reddy ST, Shrivastava S, Chattopadhyay A (2018) Local anesthet- ics induce interdigitation and thermotropic changes in dipalmi- toylphosphatidylcholine bilayers. Chem Phys Lipids 210:22-27
  74. Reynolds NP, Soragni A, Rabe M, Verdes D, Liverani E, Hand- schin S, Riek R, Seeger S (2011) Mechanism of membrane interaction and disruption by α-synuclein. J Am Chem Soc 133(48):19366-19375
  75. Rowe ES, Campion JM (1994) Alcohol induction of interdigitation in distearoylphosphatidylcholine: fluorescence studies of alcohol chain length requirements. Biophys J 67(5):1888-1895
  76. Schmid F (2017) Physical mechanisms of micro-and nanodomain for- mation in multicomponent lipid membranes. Biochim Biophys Acta 1859(4):509-528
  77. Sevcsik E, Pabst G, Jilek A, Lohner K (2007) How lipids influence the mode of action of membrane-active peptides. Biochim Biophys Acta 1768(10):2586-2595
  78. Sharma VK, Qian S (2019) Effect of an antimicrobial peptide on lateral segregation of lipids, a structure and dynamics study by neutron scattering. Langmuir 35:4152-4160
  79. Sharma VK, Mamontov E, Tyagi M, Qian S, Rai DK, Urban VS (2016) Dynamical and phase behavior of a phospholipid membrane altered by an antimicrobial peptide at low concentration. J Phys Chem Lett 7(13):2394-2401
  80. Shigematsu T, Koshiyama K, Wada S (2018) Stretch-induced inter- digitation of a phospholipid/cholesterol bilayer. J Phys Chem B 122(9):2556-2563
  81. Slater JL, Huang C-H (1988) Interdigitated bilayer membranes. Prog Lipid Res 27(4):325-359
  82. Smith EA, Dea PK (2013) Differential scanning calorimetry studies of phospholipid membranes: the interdigitated gel phase. In: Appli- cations of calorimetry in a wide context-differential scanning calorimetry, isothermal titration calorimetry and microcalorim- etry. InTech, London
  83. Stone MB, Shelby SA, Núñez MF, Wisser K, Veatch SL (2017) Protein sorting by lipid phase-like domains supports emergent signaling function in b lymphocyte plasma membranes. Elife 6:e19891
  84. Su C-J, Wu S-S, Jeng U-S, Lee M-T, Su A-C, Liao K-F, Lin W-Y, Huang Y-S, Chen C-Y (2013) Peptide-induced bilayer thin- ning structure of unilamellar vesicles and the related binding behavior as revealed by X-ray scattering. Biochim Biophys Acta 1828(2):528-534
  85. Sun WJ, Tristram-Nagle S, Suter RM, Nagle JF (1996) Structure of the ripple phase in lecithin bilayers. Proc Natl Acad Sci 93(14):7008-7012
  86. Tardieu A, Vittorio L, Reman FC (1973) Structure and polymorphism of the hydrocarbon chains of lipids: a study of lecithin-water phases. J Mol Biol 75(4):711-733
  87. Vamparys L, Gautier R, Vanni S, Bennett WFD, Tieleman DP, Antonny B, Etchebest C, Fuchs PFJ (2013) Conical lipids in flat bilayers induce packing defects similar to that induced by positive cur- vature. Biophys J 104(3):585-593
  88. Vanni S, Vamparys L, Gautier R, Drin G, Etchebest C, Fuchs PFJ, Antonny B (2013) Amphipathic lipid packing sensor motifs: probing bilayer defects with hydrophobic residues. Biophys J 104(3):575-584
  89. Vanni S, Hirose H, Barelli H, Antonny B, Gautier R (2014) A sub- nanometre view of how membrane curvature and composition modulate lipid packing and protein recruitment. Nat Commun 5:4916
  90. Varkey J, Isas JM, Mizuno N, Jensen MB, Bhatia VK, Jao CC, Petrlova J, Voss JC, Stamou DG, Steven AC et al (2010) Membrane curva- ture induction and tubulation are common features of synucleins and apolipoproteins. J Biol Chem 285(42):32486-32493
  91. Vasudevan SV, Schulz J, Zhou C, Cocco MJ (2010) Protein folding at the membrane interface, the structure of nogo-66 requires interactions with a phosphocholine surface. Proc Natl Acad Sci 107(15):6847-6851
  92. Verde AR, Sierra MB, Alarcón LM, Pedroni VI, Appignanesi GA, Morini MA (2018) Experimental and computational studies of the effects of free dha on a model phosphatidylcholine mem- brane. Chem Phys Lipids 217:12-18
  93. Wang D-C, Taraschi TF, Rubin E, Janes N (1993) Configurational entropy is the driving force of ethanol action on membrane archi- tecture. Biochim Biophys Acta 1145(1):141-148
  94. Weikl TR (2018) Membrane-mediated cooperativity of proteins. Annu Rev Phys Chem 69:521-539
  95. Welker S, Rudolph B, Frenzel E, Hagn F, Liebisch G, Schmitz G, Scheuring J, Kerth A, Blume A, Weinkauf S et al (2010) Hsp12 is an intrinsically unstructured stress protein that folds upon membrane association and modulates membrane function. Mol cell 39(4):507-520
  96. Wu EL, Cheng X, Jo S, Rui H, Song KC, Dávila-Contreras EM, Qi Y, Lee J, Monje-Galvan V, Venable RM et al (2014) Charmm-gui membrane builder toward realistic biological membrane simula- tions. J Comput Chem 35(27):1997-2004
  97. Yang L, Fukuto M (2005) Modulated phase of phospholipids with a two-dimensional square lattice. Phys Rev E 72(1):010901
  98. Yin H, Flynn AD (2016) Drugging membrane protein interactions. Annu Rev Biomed Eng 18:51-76
  99. Zambrano F, Fleischer S, Fleischer B (1975) Lipid composition of the golgi apparatus of rat kidney and liver in comparison with other subcellular organelles. Biochim Biophys Acta 380(3):357-369