Academia.eduAcademia.edu

Outline

Membrane proteins diffuse as dynamic complexes with lipids

2010, Journal of the …

https://doi.org/10.1021/JA101481B

Abstract
sparkles

AI

Biological membranes are crucial for cellular functions, and their dynamics, particularly the diffusion of proteins and lipids, are complex. This study employs atomistic and coarse-grained molecular dynamics simulations to explore the lateral diffusion of membrane proteins, revealing that they diffuse in concert with nearby lipids, forming transient complexes that influence their movement. The findings emphasize the interdependence of lipid and protein dynamics in cell membranes, suggesting a significant role of lipid-protein interactions.

FAQs

sparkles

AI

What is the average number of lipids associated with Kv1.2 protein diffusion?add

The research finds that approximately 50-100 lipids move laterally together with the Kv1.2 protein during diffusion.

How do lipid diffusion coefficients vary near membrane proteins?add

Lipid diffusion coefficients near Kv1.2 were D ≈ 6 × 10 -9 cm²/s, while non-neighboring lipids exhibited D ≈ 90 × 10 -9 cm²/s.

What unique insights were gained from simulating a 2D Lennard-Jones system?add

The simplified 2D Lennard-Jones model showed correlation behaviors similar to atomistic simulations, confirming generalizable dynamics.

How does the proximity to Kv1.2 affect lipid motion characteristics?add

Lipid motion was significantly slowed down up to 5-6 nm from Kv1.2's center of mass, indicating strong lipid-protein interactions.

What implications do the findings have for membrane biophysics theories?add

The results suggest that protein diffusion is influenced by the effective size of the protein-lipid complex, challenging traditional membrane viscosity measurements.

References (20)

  1. Simons, K.; Ikonen, E. Nature 1997, 387, 569.
  2. Lingwood, D.; Simons, K. Science 2010, 327, 46.
  3. Kahya, N.; Schwille, P. Mol. Membr. Biol. 2006, 23, 29.
  4. Falck, E.; Rog, T.; Karttunen, M.; Vattulainen, I. J. Am. Chem. Soc. 2007, 130, 44.
  5. Apajalahti, T.; Niemela, P.; Govindan, P. N.; Miettinen, M. S.; Salonen, E.; Marrink, S. J.; Vattulainen, I. Faraday Discuss. 2010, 144, 411.
  6. Busch, S.; Smuda, C.; Pardo, L. C.; Unruh, T. J. Am. Chem. Soc. 2010, 132, 3232.
  7. Gambin, Y.; Lopez-Esparza, R.; Reffay, M.; Sierecki, E.; Gov, N. S.; Genest, M.; Hodges, R. S.; Urbach, W. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 2098.
  8. Ramadurai, S.; Holt, A.; Krasnikov, V.; van der Bogaart, G.; Killian, J. A.; Poolman, B. J. Am. Chem. Soc. 2009, 131, 12650.
  9. Guigas, G.; Weiss, M. Biophys. J. 2008; L25.
  10. Bjelkmar, P.; Niemela, P.; Vattulainen, I.; Lindahl, E. PLoS Comput. Biol. 2009, 5, e1000289.
  11. Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. J. Chem. Theory Comput. 2008, 4, 435.
  12. Monticelli, L.; Kandasamy, S.; Periole, X.; Larson, R.; Tieleman, D. P.; Marrink, S. J. J. Chem. Theory Comput. 2008, 4, 819.
  13. Niemela, P. S.; Ollila, S.; Hyvonen, M. T.; Karttunen, M.; Vattulainen, I. PLoS Comput. Biol. 2007, 3, e34.
  14. Emeis, C. A.; Fehder, P. L. J. Am. Chem. Soc. 1970, 92, 2246.
  15. Donati, C.; Douglas, J. F.; Kob, W.; Plimpton, S. J.; Poole, P. H.; Glotzer, S. C. Phys. ReV. Lett. 1998, 80, 2338.
  16. Lindahl, E.; Edholm, O. Phys. ReV. E 1998, 57, 791.
  17. Tombola, F.; Pathak, M. M.; Isacoff, E. Y. Annu. ReV. Cell. DeV. Biol. 2006, 22, 23.
  18. Dupuy, A. D.; Engelman, D. M. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 2848.
  19. Jacobson, K.; Mouritsen, O. G.; Anderson, R. G. W. Nat. Cell Biol. 2007, 9, 7.
  20. Hunte, C.; Richers, S. Curr. Opin. Struct. Biol. 2008, 18, 406. JA101481B