Papers by José María Gutiérrez Gutiérrez
Research Paper Mediators of Inflammation, 9, 213–221 (2000)
TH E venom of the snake Bothrops asper, the most important poisonous snake in Central America, ev... more TH E venom of the snake Bothrops asper, the most important poisonous snake in Central America, evokes an inflammatory response, the mechanisms of which are not well characterized. The objectives of this study were to investigate whether B. asper venom and its purified toxins Ð phospholipases and metalloproteinase Ð activate the complement system and the contribution of the effect on leucocyte recruitment. In vitro chemotaxis assays were performed using Boyden’s chamber model to investigate the ability of serum incubated with venom and its purified toxins to induce neutrophil migration. The complement consumption by the venom was evaluated using an in vitro haemolytic assay. The importance of complement activation by the venom on

Inflammatory events induced by Lys-49 and Asp-49 phospholipases A2 isolated from Bothrops asper snake venom: role of catalytic activity
Toxicon : official journal of the International Society on Toxinology, 2005
The inflammatory events induced in the peritoneal cavity of mice by two PLA2s isolated from Bothr... more The inflammatory events induced in the peritoneal cavity of mice by two PLA2s isolated from Bothrops asper snake venom were investigated. MT-III, an Asp-49 catalytically active enzyme and MT-II, a catalytically inactive Lys-49 variant induced increase in vascular permeability. Inhibition of enzymatic activity of MT-III with p-bromophenacyl bromide reduced this effect. MT-III induced a larger neutrophil infiltrate than MT-II. This activity was significantly reduced after inhibition of catalytic activity. Reduction in the number of neutrophils was observed when antibodies against L-selectin, CD18 or LFA-1 were used, suggesting the involvement of these adhesion molecules in the effects of both PLA2s. There was no effect with antibodies against ICAM-1 and PECAM-1. Increase in the levels of LTB4 and TXA2, as well as of IL-1, IL-6 and TNF-alpha, were observed in the peritoneal exudates induced by MT-III. MT-II did not enhance levels of eicosanoids but increased those of cytokines. It is c...
160. Role of SVMPs, Matrikines and TLR4 in Snake Venom Induced Edema and Inflammation
Toxicon, 2012
222. Molecular Mechanisms Involved in PGE2 Release Induced by the Snake Venom Metalloproteinase BaP1 in Synoviocytes
Toxicon, 2012

Mediators of Inflammation, 2000
The venom of the snakeBothrops asper, the most important poisonous snake in Central America, evok... more The venom of the snakeBothrops asper, the most important poisonous snake in Central America, evokes an inflammatory response, the mechanisms of which are not well characterized. The objectives of this study were to investigate whetherB. aspervenom and its purified toxins – phospholipases and metalloproteinase – activate the complement system and the contribution of the effect on leucocyte recruitment.In vitrochemotaxis assays were performed using Boyden's chamber model to investigate the ability of serum incubated with venom and its purified toxins to induce neutrophil migration. The complement consumption by the venom was evaluated using anin vitrohaemolytic assay. The importance of complement activation by the venom on neutrophil migration was investigatedin vivoby injecting the venom into the peritoneal cavity of C5-deficient mice. Data obtained demonstrated that serum incubated with crude venom and its purified metalloproteinase BaP–1 are able to induce rat neutrophil chemot...

Journal of Proteomics, 2011
Both serine and metalloproteinases have been shown to play the role of toxins in the venoms of ma... more Both serine and metalloproteinases have been shown to play the role of toxins in the venoms of many snakes. Determination of the natural protein substrates of these toxins is an important feature in the toxinological characterization of these proteinases. Furthermore, characterization of their peptide bond specificity is of value for understanding active site preference of the proteinase associated with effective proteolysis as well as of use in the design of peptide substrates and inhibitor lead compounds. Typically the determination of peptide bond cleavage specificity of snake venom serine proteinases (SVSPs) and snake venom metalloproteinases (SVMPs) has been performed using limited sets of peptides or small oligopeptides as experimental substrates. Although this approach has yielded valuable data it is generally limited in scope due to the relatively small sets of substrates used to generate the consensus specificity sequences for these proteinases. In this study we use a large, plasma based, proteome-derived peptide library as substrates along with mass spectrometry to explore the peptide bond specificity of three PI SVMPs and one PIII SVMP to determine their individual peptide cleavage consensus sequences. All of the proteinases assayed displayed a clear preference for a leucine residue in the P1′ site. Careful analysis of the specificity profiles of the SVMPs examined showed interesting differences in the preferences at the other P and P′ sites suggesting functional differences between these proteinases. The PI SVMPs, leucurolysin-a, atrolysin C, and BaP1, showed preferences across the full P4 to P4′ range whereas the PIII SVMP bothropasin showed a narrower range of preferences across the sites. In silico docking experiments with the experimentally derived consensus sequences as well as with comparison of the results to those in the literature regarding peptide bond specificity based on both peptide and protein substrates give rise to a fresh understanding of the specificity of these SVMPS and may serve as a foundation for future experiments to better elucidate their mechanism of action in the complex pathophysiology of snakebite envenomation.

European Journal of Biochemistry, 2002
Bothrops snake venoms are known to induce local tissue damage such as hemorrhage and myonecrosis.... more Bothrops snake venoms are known to induce local tissue damage such as hemorrhage and myonecrosis. The opossum Didelphis marsupialis is resistant to these snake venoms and has natural venom inhibitors in its plasma. The aim of this work was to clone and study the chemical, physicochemical and biological properties of DM64, an antimyotoxic protein from opossum serum. DM64 is an acidic protein showing 15% glycosylation and with a molecular mass of 63 659 Da when analysed by MALDI-TOF MS. It was cloned and the amino acid sequence was found to be homologous to DM43, a metalloproteinase inhibitor from D. marsupialis serum, and to human a 1 B-glycoprotein, indicating the presence of five immunoglobulin-like domains. DM64 neutralized both the in vivo myotoxicity and the in vitro cytotoxicity of myotoxins I (mt-I/Asp49) and II (mt-II/Lys49) from Bothrops asper venom. The inhibitor formed noncovalent complexes with both toxins, but did not inhibit the PLA 2 activity of mt-I. Accordingly, DM64 did not neutralize the anticoagulant effect of mt-I nor its intracerebroventricular lethality, effects that depend on its enzymatic activity, and which demonstrate the dissociation between the catalytic and toxic activities of this Asp49 myotoxic PLA 2. Furthermore, despite its similarity with metalloproteinase inhibitors, DM64 presented no antihemorrhagic activity against Bothrops jararaca or Bothrops asper crude venoms, and did not inhibit the fibrinogenolytic activity of jararhagin or bothrolysin. This is the first report of a myotoxin inhibitor with an immunoglobulin-like structure isolated and characterized from animal blood.

Toxicon : official journal of the International Society on Toxinology, 2007
The venoms of Bothrops asper (BaV) and Bothrops jararaca (BjV), two of the most medically importa... more The venoms of Bothrops asper (BaV) and Bothrops jararaca (BjV), two of the most medically important poisonous snakes of Latin America, cause pronounced oedema in the victims through poorly understood mechanisms. In the present study, we examined the possible role of cyclooxygenases (COX) in the genesis of mouse paw oedema caused by BaV and BjV injections. BaV at 2.5 microg/paw and BjV at 0.75 microg/paw induced significant oedema that persisted for up to 6h following subplantar injection. Treatment with indomethacin (2 mg/kg), rofecoxib, (10 mg/kg), or dexamethasone (2 mg/kg) significantly reduced the BaV- and BjV-induced oedema formation. Treatment with SC-560 (30 mg/kg) significantly reduced the oedema formation induced by BjV but had no effect on that induced by BaV. Both venoms induced significant increases in the levels of prostaglandin E(2) (PGE(2)) and the expression of COX-1 and COX-2 in paw tissue. The peak of oedema formation and PGE(2) release correlated with marked expre...

Biomolecules
Phospholipase A2s constitute a wide group of lipid-modifying enzymes which display a variety of f... more Phospholipase A2s constitute a wide group of lipid-modifying enzymes which display a variety of functions in innate immune responses. In this work, we utilized mass spectrometry-based lipidomic approaches to investigate the action of Asp-49 Ca2+-dependent secreted phospholipase A2 (sPLA2) (MT-III) and Lys-49 sPLA2 (MT-II), two group IIA phospholipase A2s isolated from the venom of the snake Bothrops asper, on human peripheral blood monocytes. MT-III is catalytically active, whereas MT-II lacks enzyme activity. A large decrease in the fatty acid content of membrane phospholipids was detected in MT III-treated monocytes. The significant diminution of the cellular content of phospholipid-bound arachidonic acid seemed to be mediated, in part, by the activation of the endogenous group IVA cytosolic phospholipase A2α. MT-III triggered the formation of triacylglycerol and cholesterol enriched in palmitic, stearic, and oleic acids, but not arachidonic acid, along with an increase in lipid d...
PLOS MEDICINE, 2006
Confronting the neglected problem of snake bite envenoming: The need for a global partnership. PL... more Confronting the neglected problem of snake bite envenoming: The need for a global partnership. PLoS Med 3(6): e150.

Toxicon, 1992
Pathological and biochemical changes induced in mice after intramuscular injection of venom from ... more Pathological and biochemical changes induced in mice after intramuscular injection of venom from newborn specimens of the snake Bothrops riper (Terciopelo). Toxicon 30, 1099-1109, 1992.-Venom from newborn Bothrops riper snakes has higher lethal, hemorrhagic, edema-forming, proteolytic and defibrinating activities than venom from adult B. riper specimens. Electrophoretic analysis confirmed the variation between these venoms. Intramuscular injection of 100 ug of venom from newborn specimens in mice induced defibrination, together with moderate increments of serum levels of lactate dehydrogenase, creatine kinase, hemoglobin and total proteins. A conspicuous hemorrhage developed in injected muscle rapidly after envenomation, probably due to a drastic alteration in capillaries and larger blood vessels. Other histological alterations included moderate myonecrosis, lung collapse and prominent renal damage, characterized by tubular necrosis and hyalinization. Polyvalent antivenom effectively neutralized lethal, hemorrhagc and indirect hemolytic activities of newborn B. riper venom, although requiring higher antivenom doses than neutralization of venom from adult B. riper.

Toxicon, 2007
The local and systemic pathophysiological alterations induced by BjussuSP-I, a thrombin-like seri... more The local and systemic pathophysiological alterations induced by BjussuSP-I, a thrombin-like serine proteinase from the venom of the snake Bothrops jararacussu, were assessed in mice. BjussuSP-I induced a mild edema but no local myonecrosis or hemorrhage. It did not induce any microvascular alteration in the cremaster muscle. Intramuscular injection of BjussuSP-I promoted an increase in the expression of proMMP-9, but it did not induce the activation of proMMP-2 or proMMP-9 synthesized in muscle tissue injected with a myotoxic phospholipase A 2 homolog. BjussuSP-I induced defibrin(ogen)ation upon intravenous and intramuscular injections, with reduction in plasma fibrinogen concentration and increments in the levels of fibrin degradation products and D-dimer. When compared with animals having normal coagulation, mice defibrin(ogen)ated by BjussuSP-I developed a slightly larger hemorrhagic lesion in the skin when injected with metalloproteinase BaP1. Intravenous injection of sublethal doses of BjussuSP-I promoted a series of behavioral and motor changes similar to those previously described for 'gyroxin', i.e. opisthotonus and a circular body movement along the longitudinal axis.
Journal of the American Chemical Society, 2010
Protein-Protein interfaces have crucial functions in many biological processes . The large intera... more Protein-Protein interfaces have crucial functions in many biological processes . The large interaction areas of such interfaces show complex interaction motifs. Even more challenging is the understanding of (multi-)specificity in protein-protein binding. Many proteins can bind several partners to mediate their function .

Snake Venomics of the Lesser Antillean Pit Vipers Bothrops caribbaeus and Bothrops lanceolatus : Correlation with Toxicological Activities and Immunoreactivity of a Heterologous Antivenom †
Journal of Proteome Research, 2008
The venom proteomes of the snakes Bothrops caribbaeus and Bothrops lanceolatus, endemic to the Le... more The venom proteomes of the snakes Bothrops caribbaeus and Bothrops lanceolatus, endemic to the Lesser Antillean islands of Saint Lucia and Martinique, respectively, were characterized by reverse-phase HPLC fractionation, followed by analysis of each chromatographic fraction by SDS-PAGE, N-terminal sequencing, MALDI-TOF mass fingerprinting, and collision-induced dissociation tandem mass spectrometry of tryptic peptides. The venoms contain proteins belonging to seven ( B. caribbaeus) and five ( B. lanceolatus) types of toxins. B. caribbaeus and B. lanceolatus venoms contain phospholipases A 2, serine proteinases, l-amino acid oxidases and zinc-dependent metalloproteinases, whereas a long disintegrin, DC-fragments and a CRISP molecule were present only in the venom of B. caribbaeus, and a C-type lectin-like molecule was characterized in the venom of B. lanceolatus. Compositional differences between venoms among closely related species from different geographic regions may be due to evolutionary environmental pressure acting on isolated populations. The venoms of these two species differed in the composition and the relative abundance of their component toxins, but they exhibited similar toxicological and enzymatic profiles in mice, characterized by lethal, hemorrhagic, edema-forming, phospholipase A 2 and proteolytic activities. The venoms of B. caribbaeus and B. lanceolatus are devoid of coagulant and defibrinogenating effects and induce only mild local myotoxicity in mice. The characteristic thrombotic effect described in human envenomings by these species was not reproduced in the mouse model. The toxicological profile observed is consistent with the abundance of metalloproteinases, PLA 2s and serine proteinases in the venoms. A polyvalent (Crotalinae) antivenom produced in Costa Rica was able to immunodeplete approximately 80% of the proteins from both B. caribbaeus and B. lanceolatus venoms, and was effective in neutralizing the lethal, hemorrhagic, phospholipase A 2 and proteolytic activities of these venoms.

Journal of Proteome Research, 2011
Tissue damage analysis by traditional laboratory techniques is problematic. Proteomic analysis of... more Tissue damage analysis by traditional laboratory techniques is problematic. Proteomic analysis of exudates collected from affected tissue constitutes a powerful approach to assess tissue alterations, since biomarkers associated with pathologies can be identified in very low concentrations. In this study we proteomically explore the pathological effects induced by the venom of the viperid snake Bothrops asper in the gastrocnemius muscle of mice. Predominant proteins identified in the exudates included intracellular proteins, plasma proteins, extracellular matrix proteins and cell membrane-associated proteins. The presence of such proteins indicates cytotoxicity, plasma exudation, extracellular matrix degradation and shedding of membrane proteins. Some of these proteins may represent useful biomarkers for myonecrosis and microvascular damage. The effect of fucoidan, an inhibitor of myotoxic phospholipases A(2), and batimastat, an inhibitor of metalloproteinases, on the pathological effects induced by B. asper venom were also investigated. Fucoidan reduced the presence of intracellular proteins in exudates, whereas batimastat reduced the amount of relevant extracellular matrix proteins. The combination of these inhibitors resulted in the abrogation of the most relevant pathological effects of this venom. Thus, proteomic analysis of exudates represents a valuable approach to assess the characteristics of tissue damage in pathological models and the success of therapeutic interventions.

Snake Venomics of the Central American Rattlesnake Crotalus simus and the South American Crotalus durissus Complex Points to Neurotoxicity as an Adaptive Paedomorphic Trend along Crotalus Dispersal in South America
Journal of Proteome Research, 2010
We report a comparative venomic and antivenomic characterization of the venoms of newborn and adu... more We report a comparative venomic and antivenomic characterization of the venoms of newborn and adult specimens of the Central American rattlesnake, Crotalus simus, and of the subspecies cumanensis, durissus, ruruima, and terrificus of South American Crotalus durissus. Neonate and adult C. simus share about 50% of their venom proteome. The venom proteome of 6-week-old C. simus is predominantly made of the neurotoxic heterodimeric phospholipase A(2) (PLA(2) crotoxin) (55.9%) and serine proteinases (36%), whereas snake venom Zn(2+)-metalloproteinases (SVMPs), exclusively of class PIII, represent only 2% of the total venom proteins. In marked contrast, venom from adult C. simus comprises toxins from 7 protein families. A large proportion (71.7%) of these toxins are SVMPs, two-thirds of which belong to the PIII class. These toxin profiles correlate well with the overall biochemical and pharmacological features of venoms from adult (hemorrhagic) and newborn (neurotoxic) C. simus specimens. The venoms of the South American Crotalus subspecies belong to one of two distinct phenotypes. C. d. cumanensis exhibits high levels of SVMPs and low lethal potency (LD(50)), whereas C. d. subspecies terrificus, ruruima, and durissus have low SVMP activity and high neurotoxicity to mice. Their overall toxin compositions explain the outcome of envenomation by these species. Further, in all C. simus and C. durissus venoms, the concentration of neurotoxins (crotoxin and crotamine) is directly related with lethal activity, whereas lethality and metalloproteinase activity show an inverse relationship. The similar venom toxin profiles of newborn C. simus and adult C. durissus terrificus, ruruima, and durissus subspecies strongly suggests that the South American taxa have retained juvenile venom characteristics in the adult form (paedomorphism) along their North-South stepping-stone dispersal. The driving force behind paedomorphism is often competition or predation pressure. The increased concentration of the neurotoxins crotoxin and crotamine in South American rattlesnake venoms strongly argues that the gain of neurotoxicity and lethal venom activities to mammals may have represented the key axis along which overall venom toxicity has evolved during Crotalus durissus invasion of South America. The paedomorphic trend is supported by a decreasing LNC (lethal neurotoxicity coefficient, defined as the ratio between the average LD(50) of the venom and the crotoxin + crotamine concentration) along the North-South axis, coincident with the evolutionary dispersal pattern of the Neotropical rattlesnakes. The indistinguisable immunoreactivity patterns of Costa Rican and Venezuelan polyvalent antivenoms toward C. simus and C. durissus venoms strongly suggest the possibility of using these antivenoms indistinctly for the management of snakebites by adult C. simus and by certain C. d. cumanensis populations exhibiting a hemorrhagic venom phenotype. The antivenomic results also explain why the antivenoms effectively neutralize the hemorrhagic activity of adult C. simus venoms but does not protect against adult C. durissus sp. and newborn C. simus envenomations. The identification of evolutionary trends among tropical Crotalus, as reported here, may have an impact in defining the mixture of venoms for immunization to produce an effective pan-American anti-Crotalus antivenom.

Wound Exudate as a Proteomic Window to Reveal Different Mechanisms of Tissue Damage by Snake Venom Toxins
Journal of Proteome Research, 2009
In light of the complexity of wound tissue, proteomic analysis may not clearly reveal the nature ... more In light of the complexity of wound tissue, proteomic analysis may not clearly reveal the nature of the wound or the processes involved in healing. However, exudate associated with wounds may provide a "window" on cellular events leading to the development of the wound and/or its healing. In this investigation we performed proteomic analysis on wound exudates from muscular wounds in mice caused by two very different types of snake venom toxins: BaP1, a snake venom metalloproteinase and Mtx-I, a snake venom phospholipase A2. Proteomic analysis of the exudates associated with these wounds clearly differentiated them and offered new perspectives on functional mechanisms by which these toxins cause tissue damage. In the case of wounds caused by the metalloproteinase, there was evidence of degradation of nonfibrillar collagens whereas the phospholipase wound exudate was noted by the presence of fibrillar collagen type I, apolipoproteins A-I, A-IV, and E, and fibronectin. These results suggest that the hemorrhage caused by snake venom metalloproteinases may be associated with the degradation of specific extracellular matrix proteins which play a role in matrix/capillary stabilization and that release of apolipoproteins from their complexes may be involved with the dysfunctional hemostasis observed following snake envenoming.

Snake Venomics and Antivenomics of the Arboreal Neotropical Pitvipers Bothriechis lateralis and Bothriechis schlegelii
Journal of Proteome Research, 2008
We report the comparative proteomic characterization of the venoms of two related neotropical arb... more We report the comparative proteomic characterization of the venoms of two related neotropical arboreal pitvipers from Costa Rica of the genus Bothriechis, B. lateralis (side-striped palm pit viper) and B. schlegelii (eyelash pit viper). The crude venoms were fractionated by reverse-phase HPLC, followed by analysis of each chromatographic fraction by SDS-PAGE, N-terminal sequencing, MALDI-TOF mass fingerprinting, and collision-induced dissociation tandem mass spectrometry of tryptic peptides. The venom proteomes of B. lateralis and B. schlegelii comprise similar number of distinct proteins belonging, respectively, to 8 and 7 protein families. The two Bothriechis venoms contain bradykinin-potentiating peptides (BPPs), and proteins from the phospholipase A 2 (PLA 2), serine proteinase, l-amino acid oxidase (LAO), cysteine-rich secretory protein (CRISP), and Zn (2+)-dependent metalloproteinase (SVMP) families, albeit each species exhibit different relative abundances. Each venom also contains unique components, for example, snake venom vascular endothelial growth factor (svVEGF) and C-type lectin-like molecules in B. lateralis, and Kazal-type serine proteinase inhibitor-like proteins in B. schlegelii. Using a similarity coefficient, we estimate that the similarity of the venom proteins between the two Bothriechis taxa may be <10%, indicating a high divergence in their venom compositions, in spite of the fact that both species have evolved to adapt to arboreal habits. The major toxin families of B. lateralis and B. schlegelii are SVMP (55% of the total venom proteins) and PLA 2 (44%), respectively. Their different venom toxin compositions provide clues for rationalizing the distinct signs of envenomation caused by B. schlegelii and B. lateralis. An antivenomic study of the immunoreactivity of the Instituto Clodomiro Picado (ICP) polyvalent antivenom toward Bothriechis venoms revealed that l-amino acid oxidase and SVMPs represent the major antigenic protein species in both venoms. Our results provide a ground for rationalizing the reported protection of the ICP polyvalent antivenom against the hemorrhagic, coagulant, defibrinating, caseinolytic and fibrin(ogen)olytic activities of Bothriechis ( schlegelii, lateralis) venoms. However, these analyses also evidenced the limited recognition capability of the polyvalent antivenom toward a number of Bothriechis venom components, predominantly BPPs, svVEGF, Kazal-type inhibitors, some PLA 2 proteins, some serine proteinases, and CRISP molecules.

Journal of Proteome Research, 2010
Intraspecific snake venom variations have implications in the preparation of venom pools for the ... more Intraspecific snake venom variations have implications in the preparation of venom pools for the generation of antivenoms. The impact of such variation in the cross-reactivity of antivenoms against Bothrops asper venom was assessed by comparing two commercial and four experimental antivenoms. All antivenoms showed similar immunorecognition pattern toward the venoms from adult and neonate specimens. They completely immunodepleted most P-III snake venom metalloproteinases (SVMPs), L-amino acid oxidases, serine proteinases, DC fragments, cysteine-rich secretory proteins (CRISPs), and C-type lectin-like proteins, and partially immunodepleted medium-sized disintegrins, phospholipases A 2 (PLA 2 s), some serine proteinases, and P-I SVMPs. Although all antivenoms abrogated the lethal, hemorrhagic, coagulant, proteinase, and PLA 2 venoms activities, monospecific experimental antivenoms were more effective than the polyspecific experimental antivenom. In addition, the commercial antivenoms, produced in horses subjected to repeated immunization cycles, showed higher neutralization than experimental polyspecific antivenom, produced by a single round of immunization. Overall, a conspicuous pattern of cross-neutralization was evident for all effects by all antivenoms, and monospecific antivenoms raised against venom from the Caribbean population were effective against venom from the Pacific population, indicating that geographic variations in venom proteomes of B. asper from Costa Rica do not result in overt variations in immunological cross-reactivity between antivenoms.

Journal of Proteome Research, 2011
Venomic analysis of the venoms of Naja nigricollis, N. katiensis, N. nubiae, N. mossambica, and N... more Venomic analysis of the venoms of Naja nigricollis, N. katiensis, N. nubiae, N. mossambica, and N. pallida revealed similar compositional trends. The high content of cytotoxins and PLA 2 s may account for the extensive tissue necrosis characteristic of the envenomings by these species. The high abundance of a type I R-neurotoxin in N. nubiae may be responsible for the high lethal toxicity of this venom (in rodents). The ability of EchiTAb-Plus-ICP antivenom to immunodeplete and neutralize the venoms of African spitting cobras was assessed by antivenomics and neutralization tests. It partially immunodepleted 3FTx and PLA 2 s and completely immunodepleted SVMPs and CRISPs in all venoms. The antivenom neutralized the dermonecrotic and PLA 2 activities of all African Naja venoms, whereas lethality was eliminated in the venoms of N. nigricollis, N. mossambica, and N. pallida but not in those of N. nubiae and N. katiensis. The lack of neutralization of lethality of N. nubiae venom may be of medical relevance only in relatively populous areas of the Saharan region. The impaired activity of EchiTAb-Plus-ICP against N. katiensis may not represent a major concern. This species is sympatric with N. nigricollis in many regions of Africa, although very few bites have been attributed to it.
Uploads
Papers by José María Gutiérrez Gutiérrez