CN107658315A - Semiconductor device and preparation method thereof - Google Patents
Semiconductor device and preparation method thereof Download PDFInfo
- Publication number
- CN107658315A CN107658315A CN201710716657.1A CN201710716657A CN107658315A CN 107658315 A CN107658315 A CN 107658315A CN 201710716657 A CN201710716657 A CN 201710716657A CN 107658315 A CN107658315 A CN 107658315A
- Authority
- CN
- China
- Prior art keywords
- layer
- nand
- conductor
- contact
- nand strings
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B43/00—EEPROM devices comprising charge-trapping gate insulators
- H10B43/20—EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
- H10B41/20—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
- H10B41/30—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
- H10B41/35—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region with a cell select transistor, e.g. NAND
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B43/00—EEPROM devices comprising charge-trapping gate insulators
- H10B43/30—EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
- H10B43/35—EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region with cell select transistors, e.g. NAND
Landscapes
- Non-Volatile Memory (AREA)
- Semiconductor Memories (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种NAND存储器及其制备方法,尤其涉及一种形成3D NAND闪存的NAND存储器及其制备方法。The invention relates to a NAND memory and a preparation method thereof, in particular to a NAND memory forming a 3D NAND flash memory and a preparation method thereof.
背景技术Background technique
随着对高度集成电子装置的持续重视,对以更高的速度和更低的功率运行并具有增大的器件密度的半导体存储器器件存在持续的需求。为达到这一目的,已经发展了具有更小尺寸的器件和具有以水平和垂直阵列布置的晶体管单元的多层器件。3D NAND是业界所研发的一种新兴的闪存类型,通过把内存颗粒堆叠在一起来解决2D或者平面NAND闪存带来的限制。With the continued emphasis on highly integrated electronics, there is a continuing need for semiconductor memory devices that operate at higher speeds and lower power and have increased device densities. To this end, devices with smaller dimensions and multilayer devices with transistor cells arranged in horizontal and vertical arrays have been developed. 3D NAND is an emerging type of flash memory developed by the industry. It solves the limitations of 2D or planar NAND flash memory by stacking memory particles together.
平面结构的NAND闪存已接近其实际扩展极限,给半导体存储器行业带来严峻挑战。新的3D NAND技术,垂直堆叠了多层数据存储单元,具备卓越的精度。基于该技术,可打造出存储容量比同类NAND技术高达数倍的存储设备。该技术可支持在更小的空间内容纳更高存储容量,进而带来很大的成本节约、能耗降低,以及大幅的性能提升以全面满足众多消费类移动设备和要求最严苛的企业部署的需求。The planar structure of NAND flash memory is approaching its actual expansion limit, which brings severe challenges to the semiconductor memory industry. The new 3D NAND technology stacks multiple layers of data storage cells vertically with excellent precision. Based on this technology, storage devices with a storage capacity several times higher than similar NAND technologies can be created. The technology enables higher storage capacity in a smaller footprint, resulting in significant cost savings, reduced power consumption, and dramatic performance gains for many consumer mobile devices and the most demanding enterprise deployments demand.
在一种方法中,平面存储器单元(例如NAND存储器单元)形成在常规的水平阵列中。然后多个水平阵列在垂直方向上堆叠。由于在实现最小特征尺寸中对于每个层都需要临界光刻步骤,因此与此方法相关的局限性包括所得到的器件中可靠性低以及很难通过光刻实现16nm制造,从而很难进一步提高存储容量。此外,在这种构造中,用来驱动控制选择门的驱动晶体管的尺寸是层数的函数;因此,驱动晶体管的规模为层数的倍数。这会导致集成化的问题和散热方面的问题。在另一种方法中,已经发展了具有垂直取向的沟道的多层存储器。在一个构造中,多个选择门层形成在衬底上,垂直沟道穿过该多个选择门层。在每个垂直沟道中,下选择门层构造为用作下选择门(lower select gate),多个中间栅极层构造为用作控制栅极,上选择门层构造为用作上选择门(upper select gate)。连接在第一水平方向上彼此相邻的上选择门以用作器件的行选择线。连接在第二水平方向上彼此相邻的垂直沟道以用作器件的位线(bit line)。其他尝试垂直取向沟道的方法已经取得的成果有限。In one approach, planar memory cells (eg, NAND memory cells) are formed in a conventional horizontal array. Multiple horizontal arrays are then stacked vertically. Limitations associated with this approach include low reliability in the resulting devices and difficulty in achieving 16nm fabrication by lithography due to the critical lithographic steps required for each layer in achieving the smallest feature size, making it difficult to further improve storage. Furthermore, in this configuration, the size of the drive transistors used to drive the control select gates is a function of the number of layers; therefore, the size of the drive transistors is a multiple of the number of layers. This can lead to integration issues and thermal issues. In another approach, multi-layer memories with vertically oriented channels have been developed. In one configuration, a plurality of select gate layers are formed on the substrate through which a vertical channel passes. In each vertical channel, a lower select gate layer is configured to function as a lower select gate, a plurality of intermediate gate layers are configured to function as control gates, and an upper select gate layer is configured to function as an upper select gate ( upper select gate). The upper select gates adjacent to each other in the first horizontal direction are connected to serve as row select lines of the device. The vertical channels adjacent to each other in the second horizontal direction are connected to serve as bit lines of the device. Other attempts to vertically align channels have had limited success.
目前,关于3D NAND闪存技术,在国内外已有广泛的专利申请。例如中国发明专利申请公开号CN101483194A,公开一种垂直型非易失性存储器器件及其制造方法。在该半导体器件及其制造方法中,器件包括沿水平方向延伸的单晶半导体材料的衬底以及在该衬底上的多个层间电介质层。多个选择门图案被提供,每个选择门图案在相邻下层间电介质层与相邻上层间电介质层之间。半导体材料的垂直沟道沿垂直方向延伸穿过多个层间电介质层和选择门图案,选择门绝缘层在每个选择门图案与垂直沟道之间并使选择门图案与垂直沟道绝缘。如附图1所示,为该垂直沟道存储器器件的剖面图。该垂直沟道存储器器件由下到上依次形成Si衬底层300、外围电路区域302、以及阵列器件层。At present, regarding 3D NAND flash memory technology, there have been extensive patent applications at home and abroad. For example, the Chinese invention patent application publication number CN101483194A discloses a vertical non-volatile memory device and a manufacturing method thereof. In the semiconductor device and its manufacturing method, the device includes a substrate of single crystal semiconductor material extending in the horizontal direction and a plurality of interlayer dielectric layers on the substrate. A plurality of select gate patterns are provided, each select gate pattern between an adjacent lower interlayer dielectric layer and an adjacent upper interlayer dielectric layer. A vertical channel of semiconductor material extends vertically through a plurality of interlayer dielectric layers and selection gate patterns, and a selection gate insulating layer is between each selection gate pattern and the vertical channel and insulates the selection gate pattern from the vertical channel. As shown in FIG. 1 , it is a cross-sectional view of the vertical channel memory device. In the vertical channel memory device, a Si substrate layer 300, a peripheral circuit region 302, and an array device layer are sequentially formed from bottom to top.
然而上述专利技术的缺点是,上述垂直沟道存储器器件由于只在一个Si衬底层上顺序制作,导致后面的器件(例如NAND串)在制作时温度必需有所限制,否则会因为温度过高而导致前面制作好的器件的离子注入层中的离子(例如在硅基板上制造的NMOS和PMOS器件)产生离子扩散,从而使得器件之间的结合深度很难控制,从而影响产品性能。也就是说各个层之间制造的要求会互相之间有所限制。However, the disadvantage of the above-mentioned patented technology is that the above-mentioned vertical channel memory device is sequentially fabricated on only one Si substrate layer, so that the temperature of subsequent devices (such as NAND strings) must be limited during fabrication, otherwise it will be damaged due to excessive temperature. This leads to ion diffusion of ions in the ion implantation layer of previously fabricated devices (such as NMOS and PMOS devices fabricated on silicon substrates), making it difficult to control the bonding depth between devices, thus affecting product performance. That is to say, the manufacturing requirements between the various layers will be limited to each other.
另外,上述专利中在硅基板上制造外围器件302后,在外围器件302顶部形成NAND器件。如此,NAND器件与硅基板是隔离的。这样NAND器件需要使用一个源层替代硅基板,从而导致器件性能下降。In addition, after the peripheral device 302 is fabricated on the silicon substrate in the above patent, a NAND device is formed on top of the peripheral device 302 . As such, the NAND devices are isolated from the silicon substrate. Such NAND devices need to use a source layer instead of the silicon substrate, resulting in reduced device performance.
如何能够避免制造过程中各层间的互相影响,保证产品的性能是目前需要解决的问题。How to avoid the interaction between layers in the manufacturing process and ensure the performance of the product is a problem that needs to be solved at present.
发明内容Contents of the invention
本发明的目的是通过以下技术方案实现的。The purpose of the present invention is achieved through the following technical solutions.
针对上述存在的问题,本发明公开了一种半导体装置,由下到上依次包括:硅基板,形成在所述硅基板上的外围器件,形成在所述外围器件上的一个或多个互连层和形成在一个或多个互连层上的阵列器件。在一些实施例中,所述阵列器件进一步包括形成在所述阵列器件上端的单晶硅层。In view of the above existing problems, the present invention discloses a semiconductor device, which comprises from bottom to top: a silicon substrate, peripheral devices formed on the silicon substrate, and one or more interconnections formed on the peripheral devices layers and array devices formed on one or more interconnect layers. In some embodiments, the array device further includes a single crystal silicon layer formed on the upper end of the array device.
在一些实施例中,所述半导体装置进一步包括形成在阵列器件上方的多个后段制程(back-end-of-line,BEOL)互联层和衬垫层。In some embodiments, the semiconductor device further includes a plurality of back-end-of-line (BEOL) interconnect layers and pad layers formed over the array device.
在一些实施例中,外围器件包括多个金氧半导体场效应晶体管(MOSFETs)。在一些实施例中,所述外围器件形成在硅基板上。在一些实施例中,所述硅基板具有掺杂区和隔离区。在一些实施例中,所述外围器件的金氧半导体场效应晶体管(MOSFETs)用作存储器的不同功能器件,例如页缓存器、传感放大器、列译码器或行译码器。In some embodiments, the peripheral devices include a plurality of metal oxide semiconductor field effect transistors (MOSFETs). In some embodiments, the peripheral devices are formed on a silicon substrate. In some embodiments, the silicon substrate has doped regions and isolation regions. In some embodiments, the metal oxide semiconductor field effect transistors (MOSFETs) of the peripheral devices are used as different functional devices of the memory, such as page buffers, sense amplifiers, column decoders or row decoders.
在一些实施例中,一个或多个互联层包括外围互连;在一些实施例中,所述外围互连包括多个互联层和接触层。在一些实施例中,所述互联层包括多个金属层。所述金属层可以由钨、铜、铝或其他适合的材料制成。在一些实施例中,所述接触层可由钨、铜、铝或其他适合的材料制成。在一些实施例中,所述一个或多个互联层形成用于在不同的外围晶体管间传递电信号,或者在外围晶体管和阵列器件之间传递电信号。In some embodiments, the one or more interconnect layers include peripheral interconnects; in some embodiments, the peripheral interconnects include multiple interconnect layers and contact layers. In some embodiments, the interconnect layer includes a plurality of metal layers. The metal layer can be made of tungsten, copper, aluminum or other suitable materials. In some embodiments, the contact layer may be made of tungsten, copper, aluminum or other suitable materials. In some embodiments, the one or more interconnection layers are formed to transfer electrical signals between different peripheral transistors, or transfer electrical signals between peripheral transistors and array devices.
在一些实施例中,一个或多个互联层包括阵列互联。在一些实施例中,所述阵列互联包括多个互联层和接触层。在一些实施例中,所述互联层包括多个金属层。所述金属层可以由钨、铜、铝或其他适合的材料制成。在一些实施例中,所述接触层可由钨、铜、铝或其他适合的材料制成。在一些实施例中,所述外围互连形成用于在阵列器件的不同区域间传递电信号,或者在外围晶体管和阵列器件之间传递电信号。In some embodiments, one or more interconnect layers include array interconnects. In some embodiments, the array interconnect includes a plurality of interconnect layers and contact layers. In some embodiments, the interconnect layer includes a plurality of metal layers. The metal layer can be made of tungsten, copper, aluminum or other suitable materials. In some embodiments, the contact layer may be made of tungsten, copper, aluminum or other suitable materials. In some embodiments, the peripheral interconnection is formed to transfer electrical signals between different regions of the array device, or transfer electrical signals between peripheral transistors and the array device.
在一些实施例中,所述阵列器件包括多个NAND串。在一些实施例中,所述阵列器件进一步包括多个形成在所述多个NAND串下方的互联层。在一些实施例中,所述阵列器件进一步包括形成在所述NAND串上方的单晶硅层。在一些实施例中,所述单晶硅层是硅基板的一部分并在后续工艺中通过合适的技术被减薄,例如背部研磨、湿/干蚀刻,和/或化学机械抛光技术。在一些实施例中,所述单晶硅层与所述多个NAND串接触。在一些实施例中,所述单晶硅层的厚度介于200纳米到50微米之间。在一些实施例中,所述单晶硅层的厚度介于500纳米到10微米之间。在一些实施例中,所述单晶硅层的厚度介于500纳米到5微米之间。在一些实施例中,使用n型和/或p型掺杂剂对所述单晶硅层进行部分或全部掺杂。In some embodiments, the array device includes a plurality of NAND strings. In some embodiments, the array device further includes a plurality of interconnection layers formed under the plurality of NAND strings. In some embodiments, the array device further includes a single crystal silicon layer formed over the NAND strings. In some embodiments, the monocrystalline silicon layer is part of a silicon substrate and is thinned by suitable techniques in subsequent processes, such as backgrinding, wet/dry etching, and/or chemical mechanical polishing techniques. In some embodiments, the monocrystalline silicon layer is in contact with the plurality of NAND strings. In some embodiments, the thickness of the monocrystalline silicon layer is between 200 nanometers and 50 micrometers. In some embodiments, the thickness of the monocrystalline silicon layer is between 500 nm and 10 microns. In some embodiments, the thickness of the monocrystalline silicon layer is between 500 nm and 5 microns. In some embodiments, the monocrystalline silicon layer is partially or fully doped with n-type and/or p-type dopants.
在一些实施例中,每个所述NAND串包括:在竖直方向延伸并穿过所述多个导体/绝缘体叠层的半导体通道(例如硅通道)。每个这样的导体层或绝缘体层可以称作一个等级层。多个导体/绝缘体叠层也可以称作等级层堆栈。导体层可以用作字线(或控制门)。多个层可以位于导体层和半导体通道之间。在一些实施例中,所述多个层包括隧道层,例如,隧道氧化物层,半导体通道中的电子或空穴可以通过这层隧道层隧穿至NAND串的充电存储单元层中。在一些实施例中,所述多个层包括能够存储电荷的存储单元层。存储单元层中的电荷的存储或是移除决定了半导体通道的开/关状态。在一些实施例中,存储单元层可由多晶硅层或氮化硅层制成。在一些实施例中,所述多个层进一步包括阻隔层,例如一个氧化硅层或一个由氧化硅/氮化硅/氧化硅(ONO)三层构成的复合层。在一些实施例中,所述阻隔层可以进一步包括一个高K介电层(例如氧化铝)。In some embodiments, each of said NAND strings includes a semiconductor channel (eg, a silicon channel) extending in a vertical direction through said plurality of conductor/insulator stacks. Each such layer of conductor or insulator may be referred to as a hierarchical layer. Multiple conductor/insulator stacks may also be referred to as a hierarchical layer stack. The conductor layers can be used as word lines (or control gates). Multiple layers may be located between the conductor layer and the semiconductor channel. In some embodiments, the plurality of layers includes a tunnel layer, eg, a tunnel oxide layer, through which electrons or holes in the semiconductor channel can tunnel into the charged storage cell layer of the NAND string. In some embodiments, the plurality of layers includes a layer of memory cells capable of storing charge. The storage or removal of charge in the memory cell layer determines the on/off state of the semiconductor channel. In some embodiments, the memory cell layer may be made of a polysilicon layer or a silicon nitride layer. In some embodiments, the plurality of layers further includes a barrier layer, such as a silicon oxide layer or a composite layer consisting of silicon oxide/silicon nitride/silicon oxide (ONO) triple layers. In some embodiments, the barrier layer may further include a high-K dielectric layer (eg, alumina).
在一些实施例中,所述NAND串进一步包括一个外延硅层,其形成在所述半导体通道的上端。在一些实施例中,所述外延硅层从所述NAND串上方的单晶硅层外延生长。In some embodiments, the NAND string further includes an epitaxial silicon layer formed on top of the semiconductor channel. In some embodiments, the epitaxial silicon layer is grown epitaxially from a single crystal silicon layer over the NAND string.
在一些实施例中,所述NAND串进一步包括选择门,其由等级层堆栈中的一个或多个上导体层形成。在一些实施例中,所述选择门控制所述NAND串的半导体通道的开/关状态。在一些实施例中,所述NAND串的选择门由等级层堆栈上方的一个独立导体层形成。在一些实施例中,所述NAND串进一步包括由等级层堆栈中的一个或多个下导体层形成选择门。在一些实施例中,所述NAND串的选择门由等级层堆栈下方的一个独立导体层形成。In some embodiments, the NAND string further includes select gates formed from one or more upper conductor layers in the hierarchical layer stack. In some embodiments, the select gate controls on/off states of semiconductor channels of the NAND string. In some embodiments, the select gates of the NAND strings are formed by a separate conductor layer above the hierarchical layer stack. In some embodiments, the NAND string further includes select gates formed from one or more lower conductor layers in the hierarchical layer stack. In some embodiments, the select gates of the NAND strings are formed by a separate conductor layer below the hierarchical layer stack.
在一些实施例中,所述NAND串通过形成在NAND串上方的单晶硅层的掺杂区连接源触点。在一些实施例中,所述单晶硅层的掺杂区由p型掺杂剂掺杂。在一些实施例中,所述源触点竖直延伸穿过等级层堆栈并在上端与单晶硅层接触。在一些实施例中,所述源触点的底端与一个或多个形成在源触点下方的触点接触。In some embodiments, the NAND strings are connected to source contacts through doped regions of the monocrystalline silicon layer formed over the NAND strings. In some embodiments, the doped region of the monocrystalline silicon layer is doped with a p-type dopant. In some embodiments, the source contact extends vertically through the hierarchical layer stack and contacts the monocrystalline silicon layer at an upper end. In some embodiments, the bottom end of the source contact is in contact with one or more contacts formed below the source contact.
在一些实施例中,阵列器件进一步包括多个字线触点。在一些实施例中,所述多个字线触点垂直延伸并且所述多个字线触点的每一个具有一个与字线接触的端,由此,阵列器件的字线可以通过字线触点分别进行寻址。在一些实施例中,每一字线触点形成在字线之下并与所述字线连接。在一些实施例中,多个字线触点通过采用湿法蚀刻或干法蚀刻形成接触空穴或接触沟槽,然后使用导体(例如钨)填充所述接触孔空穴或接触沟槽。在一些实施例中,填充接触孔或接触沟槽包括在沉积所述导体前沉积阻挡层和/或粘结层。在一些实施例中,所述字线触点首先形成在字线上方,然后将晶圆上下倒置从而使得字线触点位于字线下方。In some embodiments, the array device further includes a plurality of word line contacts. In some embodiments, the plurality of word line contacts extend vertically and each of the plurality of word line contacts has an end in contact with the word line, whereby the word line of the array device can pass through the word line contact. Points are addressed individually. In some embodiments, each wordline contact is formed below and connected to the wordline. In some embodiments, the plurality of word line contacts are formed by wet etching or dry etching to form contact holes or contact grooves, and then a conductor (such as tungsten) is used to fill the contact hole holes or contact grooves. In some embodiments, filling the contact hole or contact trench includes depositing a barrier layer and/or an adhesion layer prior to depositing the conductor. In some embodiments, the wordline contacts are first formed above the wordlines, and then the wafer is turned upside down so that the wordline contacts are below the wordlines.
在一些实施例中,所述NAND串下方形成的互联层包括多个位线触点,其与所述NAND串的底部接触。在一些实施例中,多个所述位线触点的接触孔互相独立。在一些实施例中,所述位线触点连接每个NAND串从而使得每个NAND串能够独立通过触点寻址。在一些实施例中,所述位线触点的形成方式如下:首先由湿法刻蚀或干法刻蚀形成接触孔或接触沟槽,然后使用导体(例如钨)填充所述接触孔或接触沟槽。在一些实施例中,使用化学气相沉积法(CVD)、物理气相沉积法(PVD)、或原子层沉积法(ALD)完成接触孔或接触沟槽的填充。在一些实施例中,所述位线触点首先形成在NAND串上方,然后将晶圆上下倒置从而使得位线触点位于NAND串下方。In some embodiments, the interconnect layer formed below the NAND strings includes a plurality of bit line contacts that make contact with the bottom of the NAND strings. In some embodiments, the contact holes of the plurality of bit line contacts are independent from each other. In some embodiments, the bit line contacts connect each NAND string such that each NAND string can be independently addressed by the contacts. In some embodiments, the bit line contacts are formed as follows: first, contact holes or contact trenches are formed by wet etching or dry etching, and then the contact holes or contact trenches are filled with a conductor (such as tungsten). groove. In some embodiments, the filling of the contact holes or contact trenches is accomplished using chemical vapor deposition (CVD), physical vapor deposition (PVD), or atomic layer deposition (ALD). In some embodiments, the bitline contacts are first formed over the NAND strings, and then the wafer is turned upside down so that the bitline contacts are under the NAND strings.
在一些实施例中,一个或多个互联层进一步包括粘结界面。在一些实施例中,所述粘结界面可以形成在两个绝缘层之间,例如氮化硅层和氧化硅层之间。所述粘结界面也可以形成在两个金属层之间,例如一个铜层和另一个铜层之间。在一些实施例中,所述粘结界面既可以包括绝缘层之间的界面也可以包括金属层之间的界面。在一些实施例中,粘结界面由位于粘结界面两侧的绝缘层和/或导体层之间的化学键合形成。在一些实施例中,粘结界面由位于粘结界面两侧的绝缘层和/或导体层之间的物理相互作用(例如互扩散)形成。在一些实施例中,在结合工艺之前,通过对粘结界面两侧的表面进行等离子体处理后形成所述粘结界面。在一些实施例中,在结合工艺之前,通过对粘结界面两侧的表面进行热处理后形成所述粘结界面。In some embodiments, one or more interconnect layers further include a bonding interface. In some embodiments, the bonding interface may be formed between two insulating layers, such as between a silicon nitride layer and a silicon oxide layer. The bonding interface may also be formed between two metal layers, for example one copper layer and another copper layer. In some embodiments, the bonding interface may include an interface between insulating layers or an interface between metal layers. In some embodiments, the bonding interface is formed by chemical bonding between insulating and/or conductive layers on both sides of the bonding interface. In some embodiments, the bonding interface is formed by physical interaction (eg, interdiffusion) between insulating and/or conductive layers on either side of the bonding interface. In some embodiments, before the bonding process, the bonding interface is formed by performing plasma treatment on the surfaces on both sides of the bonding interface. In some embodiments, before the bonding process, the bonding interface is formed by heat-treating the surfaces on both sides of the bonding interface.
在一些实施例中,所述存储器进一步包括多个等级层堆栈。在一些实施例中,在相邻等级层堆栈间可以形成中间堆栈层。在一些实施例中,所述中间堆栈层连接上侧等级层堆栈的NAND串和下侧等级层堆栈的NAND串。在一些实施例中,上侧等级堆栈的NAND串的和下侧等级层堆栈的NAND串通过中间堆栈层的导体部分进行电连接以形成更长的NAND串。In some embodiments, the memory further includes a plurality of hierarchical layer stacks. In some embodiments, intermediate stack layers may be formed between adjacent hierarchical layer stacks. In some embodiments, the middle stack layer connects the NAND strings of the upper hierarchical layer stack and the NAND strings of the lower hierarchical layer stack. In some embodiments, the NAND strings of the upper level stack and the NAND strings of the lower level stack are electrically connected through conductor portions of the middle stack layer to form longer NAND strings.
在一些实施例中,所述装置进一步包括所述多个贯穿阵列触点,所述贯彻阵列触点垂直延伸通过所述等级堆栈或多个等级堆栈。在一些实施例中,多个贯穿阵列触点既连接等级层堆栈的NAND串下方形成的多个互联层,也连接等级层堆栈的NAND串上方形成的多个互联层。在一些实施例中,所述多个贯穿阵列触点的形成方式如下:首先由干法刻蚀形成接触孔和/或接触沟槽,然后使用导体材料(例如钨、铜或硅化物)填充所述接触孔或接触沟槽。In some embodiments, the apparatus further includes the plurality of through-array contacts extending vertically through the level stack or stacks. In some embodiments, the plurality of through-array contacts connects both interconnect layers formed below the NAND strings of the hierarchical layer stack and interconnect layers formed above the NAND strings of the hierarchical layer stack. In some embodiments, the plurality of through-array contacts are formed by first forming contact holes and/or contact trenches by dry etching, and then filling the contact holes and/or contact trenches with a conductive material (such as tungsten, copper, or silicide). contact holes or contact trenches.
在一些实施例中,形成的所述BEOL互联层用于传输半导体装置的电信号,包括阵列器件和外围器件的电信号。在一些实施例中,形成的所述衬垫层用于传输半导体装置的电信号到外部电信号通道。在一些实施例中,所述BEOL互联层包括互联导体层和接触层。所述互联导体层和接触层包括导电材料,例如钨、铜、铝、硅化物、和/或其他合适导电材料。在一些实施例中,衬底层包括导体,例如钨、铜、铝、硅化物和/或其他合适导电材料。In some embodiments, the formed BEOL interconnection layer is used to transmit electrical signals of semiconductor devices, including electrical signals of array devices and peripheral devices. In some embodiments, the formed liner layer is used to transmit electrical signals of the semiconductor device to external electrical signal channels. In some embodiments, the BEOL interconnect layer includes an interconnect conductor layer and a contact layer. The interconnect conductor layers and contact layers include conductive materials such as tungsten, copper, aluminum, silicide, and/or other suitable conductive materials. In some embodiments, the substrate layer includes a conductor, such as tungsten, copper, aluminum, silicide, and/or other suitable conductive materials.
针对上述存在的问题,本发明还公开了一种半导体装置的制备方法。其中,制备半导体装置方法包括如下步骤:In view of the above problems, the present invention also discloses a method for manufacturing a semiconductor device. Wherein, the method for preparing a semiconductor device comprises the steps of:
形成外围器件;Form peripheral devices;
形成阵列器件;forming an array device;
将所述外围器件和阵列器件相对布置并通过粘结界面结合所述外围器件和阵列器件。Arranging the peripheral device and the array device oppositely and bonding the peripheral device and the array device through an adhesive interface.
优选的,其中,制备外围器件具体包括如下步骤:Preferably, wherein, preparing the peripheral device specifically includes the following steps:
形成第一硅基板;forming a first silicon substrate;
在第一硅基板上形成外围器件,其中所述外围器件包括MOS晶体管;forming peripheral devices on the first silicon substrate, wherein the peripheral devices include MOS transistors;
在所述外围器件上方形成外围互联。Peripheral interconnects are formed over the peripheral devices.
优选的,其中,制备阵列器件具体包括如下步骤:Preferably, wherein, preparing the array device specifically includes the following steps:
形成第二硅基板;forming a second silicon substrate;
在所述第二硅基板内形成掺杂区和隔离区;forming a doped region and an isolation region in the second silicon substrate;
在所述第二硅基板上形成一个或多个NAND串;其中,每个所述NAND串包括:多个导体/绝缘体叠层,在竖直方向延伸并穿过所述多个导体/绝缘体叠层的半导体通道,多个形成在所述半导体通道和导体层之间的存储单元,形成在所述存储单元和半导体通道之间的隧道层,形成在存储单元和导体层之间的阻隔层,和形成在所述半导体通道底端的单晶硅外延层;其中,所述一个或多个NAND串与所述第二硅基板接触。在一些实施例中,所述单晶硅外延层从所述第二硅基板外延生长;其中,所述一个或多个NAND串进一步包括形成在NAND串一端的选择门。One or more NAND strings are formed on the second silicon substrate; wherein each of the NAND strings includes: a plurality of conductor/insulator stacks extending vertically through the plurality of conductor/insulator stacks a layer of semiconductor channels, a plurality of memory cells formed between the semiconductor channels and the conductor layer, a tunnel layer formed between the memory cells and the semiconductor channel, a barrier layer formed between the memory cells and the conductor layer, and a monocrystalline silicon epitaxial layer formed at the bottom of the semiconductor channel; wherein the one or more NAND strings are in contact with the second silicon substrate. In some embodiments, the monocrystalline silicon epitaxial layer is epitaxially grown from the second silicon substrate; wherein the one or more NAND strings further include a select gate formed at one end of the NAND string.
在NAND串上形成阵列互联层,其中形成阵列互联层的步骤中包括形成与一个或多个NAND串接触的位线触点。形成阵列互联层进一步包括形成一个或多个互联层和接触层,其中所述互联层和接触层包括导电材料,例如钨、铝、铜、和/或其他合适材料。An array interconnection layer is formed on the NAND strings, wherein the step of forming the array interconnection layer includes forming bit line contacts to contact one or more NAND strings. Forming the array interconnection layer further includes forming one or more interconnection and contact layers, wherein the interconnection and contact layers include conductive materials such as tungsten, aluminum, copper, and/or other suitable materials.
根据一些实施例,形成阵列互联层进一步包括形成一个或多个NAND串的源触点。在一些实施例中,所述源触点竖直延伸并贯穿多个导体/绝缘体叠层。在一些实施例中,所述源触点的一端与所述第二硅基板接触,而另一端与阵列触点的互联层接触。在一些实施例中,所述源触点通过第二硅基板电性连接一个或多个NAND串。According to some embodiments, forming the array interconnect layer further includes forming source contacts for one or more NAND strings. In some embodiments, the source contact extends vertically through multiple conductor/insulator stacks. In some embodiments, one end of the source contact is in contact with the second silicon substrate, and the other end is in contact with the interconnection layer of the array contacts. In some embodiments, the source contact is electrically connected to one or more NAND strings through the second silicon substrate.
粘结步骤具体包括:将所述外围器件和所述阵列器件相对布置并通过粘结界面粘结结合,然后减薄第二硅衬底层的背侧,在所述背侧上形成Pad层,并在PAD层上形成BEOL介质层。The bonding step specifically includes: arranging the peripheral device and the array device oppositely and bonding them through the bonding interface, then thinning the back side of the second silicon substrate layer, forming a Pad layer on the back side, and A BEOL dielectric layer is formed on the PAD layer.
在粘结界面将外围器件和阵列器件结合,其中结合外围器件和阵列器件的步骤包括:将所述阵列器件倒置,对齐面对外围器件的阵列互联层和面对阵列器件的外围互联层,将阵列器件放置于外围器件之上,从而使得阵列互联层的表面接触外围互联层的表面,执行结合处理以形成粘结界面。在一些实施例中,结合处理包括等离子体处理工艺、湿法工艺和/或热处理工艺,以使得面对粘结界面的阵列互联层的表面和外围互联层的表面形成物理或化学结合。在一些实施例中,阵列互联层的表面包括一个氮化硅层而外围互联层的表面包括一个氧化硅层。在一些实施例中,阵列互联层的表面包括一个氧化硅层而外围互联层的表面包括一个氮化硅层。在一些实施例中,阵列互联层的表面导体和外围互联层的表面导体均包括铜。Combine the peripheral device and the array device at the bonding interface, wherein the step of combining the peripheral device and the array device includes: turning the array device upside down, aligning the array interconnection layer facing the peripheral device and the peripheral interconnection layer facing the array device, and The array device is placed on the peripheral device such that the surface of the array interconnection layer contacts the surface of the peripheral interconnection layer, and a bonding process is performed to form an adhesive interface. In some embodiments, the bonding treatment includes a plasma treatment process, a wet process and/or a heat treatment process, so that the surface of the array interconnection layer facing the bonding interface and the surface of the peripheral interconnection layer form a physical or chemical bond. In some embodiments, the surface of the array interconnect layer includes a silicon nitride layer and the surface of the peripheral interconnect layer includes a silicon oxide layer. In some embodiments, the surface of the array interconnect layer includes a silicon oxide layer and the surface of the peripheral interconnect layer includes a silicon nitride layer. In some embodiments, both the surface conductors of the array interconnect layer and the surface conductors of the peripheral interconnect layer include copper.
在一些实施例中,阵列互联层和外围互联层表面的结合是通过在两侧的绝缘层(例如氮化硅层或氧化硅层)和/或导体层之间形成物理相互作用(例如互扩散)完成的。阵列互联层和外围互联层表面之间的界面是结合界面。在一些实施例中,在结合工艺之前,对阵列互联层和外围互联层表面的等离子体处理能够加强两个表面之间的结合力。在一些实施例中,在结合工艺之前,对阵列互联层和外围互联层表面的湿法工艺处理能够加强两个表面之间的结合力。在一些实施例中,将阵列互联层放置于外围互联层之上包括对齐阵列互联层和外围互联层的触点区域,从而两个互联层的触点区域在两侧结合在一起时能够接触。在一些实施例中,当阵列互联层和外围互联层的表面接触时,执行热处理操作。在一些实施例中,这种热处理促进了阵列互联层和外围互联层的导电材料(例如铜)之间的互扩散。In some embodiments, the combination of the surface of the array interconnection layer and the peripheral interconnection layer is achieved by forming physical interactions (such as interdiffusion) between insulating layers (such as silicon nitride layers or silicon oxide layers) and/or conductor layers on both sides. )Completed. The interface between the array interconnect layer and the surface of the peripheral interconnect layer is a bonding interface. In some embodiments, prior to the bonding process, plasma treatment of the surfaces of the array interconnect layer and the peripheral interconnect layer can enhance the bonding force between the two surfaces. In some embodiments, prior to the bonding process, wet processing of the surfaces of the array interconnection layer and the peripheral interconnection layer can strengthen the bonding force between the two surfaces. In some embodiments, placing the array interconnect layer over the peripheral interconnect layer includes aligning the contact areas of the array interconnect layer and the peripheral interconnect layer so that the contact areas of the two interconnect layers make contact when the two sides are brought together. In some embodiments, the heat treatment operation is performed while the surfaces of the array interconnect layer and the peripheral interconnect layer are in contact. In some embodiments, this thermal treatment promotes interdiffusion between the conductive material (eg, copper) of the array interconnect layer and the peripheral interconnect layer.
在一些实施例中,在制造方法中可以形成一个或多个粘结界面。在一些实施例中,多个阵列器件与一个外围器件结合。在一些实施例中,一个阵列器件可以与多个外围器件结合。在一些实施例中,多个阵列器件与多个外围器件结合。In some embodiments, one or more bonding interfaces may be formed during the manufacturing method. In some embodiments, multiple array devices are combined with one peripheral device. In some embodiments, an array device can be combined with multiple peripheral devices. In some embodiments, multiple array devices are combined with multiple peripheral devices.
在一些实施例中,阵列器件包括多个等级层堆栈。每个等级层堆栈包括多个导体/绝缘层。在一些实施例中,在相邻等级层堆栈间可以形成中间堆栈层。在一些实施例中,所述中间堆栈层连接上侧等级层堆栈的NAND串和下侧等级层堆栈的NAND串。In some embodiments, the array device includes multiple hierarchical layer stacks. Each hierarchical layer stack includes multiple conductor/insulation layers. In some embodiments, intermediate stack layers may be formed between adjacent hierarchical layer stacks. In some embodiments, the middle stack layer connects the NAND strings of the upper hierarchical layer stack and the NAND strings of the lower hierarchical layer stack.
在结合阵列器件和外围器件之后,减薄所述阵列器件的第二硅基板。在一些实施例中,减薄第二硅基板的工艺由化学机械平坦化(CMP)工艺完成。在一些实施例中,减薄第二硅基板的工艺也可以由其他合适工艺完成,例如,湿法刻蚀和/或干法刻蚀。After combining the array device and the peripheral device, the second silicon substrate of the array device is thinned. In some embodiments, the process of thinning the second silicon substrate is accomplished by a chemical mechanical planarization (CMP) process. In some embodiments, the process of thinning the second silicon substrate may also be completed by other suitable processes, for example, wet etching and/or dry etching.
由于阵列器件和外围器件分别独立形成,形成阵列器件/阵列互联层和外围器件/外围互联层的工艺顺序能够互换。Since the array device and the peripheral device are formed independently, the process sequence of forming the array device/array interconnection layer and the peripheral device/peripheral interconnection layer can be interchanged.
本发明的优点在于:The advantages of the present invention are:
本发明通过将阵列器件和外围器件的制作分开在两个硅片上完成,能够避免两个器件制造时互相影响对方的制作过程,因此解决了现有技术中后面的层的制作受前面的层制作后温度限制的问题。The present invention separates the manufacture of the array device and the peripheral device on two silicon wafers, which can prevent the two devices from affecting each other's manufacturing process during manufacture, thus solving the problem that the manufacturing of the latter layer is affected by the front layer in the prior art. The problem of temperature limit after production.
本发明公开的半导体装置,通过将阵列器件层设置在外围电路层的顶端,从而增加了装置的密度。并且简化了外围电路层和阵列器件层的制备方法,从而获得了更好的外围电路层性能(例如,CMOS性能)。CMOS性能的提高是由于外围电路和阵列器件分别制备,使得后段阵列器件的高温工艺对前段外围器件没有影响,后端器件的性能可以得到提升(比如掺杂物不会有额外的扩散,比如离子注入形成的结深可以比较好的控制,等等。)In the semiconductor device disclosed in the present invention, the density of the device is increased by arranging the array device layer on the top of the peripheral circuit layer. Moreover, the preparation method of the peripheral circuit layer and the array device layer is simplified, thereby obtaining better performance of the peripheral circuit layer (for example, CMOS performance). The improvement of CMOS performance is due to the separate preparation of peripheral circuits and array devices, so that the high-temperature process of rear-end array devices has no effect on front-end peripheral devices, and the performance of back-end devices can be improved (for example, there will be no additional diffusion of dopants, such as The junction depth formed by ion implantation can be better controlled, etc.)
附图说明Description of drawings
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:Various other advantages and benefits will become apparent to those of ordinary skill in the art upon reading the following detailed description of the preferred embodiment. The drawings are only for the purpose of illustrating a preferred embodiment and are not to be considered as limiting the invention. Also throughout the drawings, the same reference numerals are used to designate the same components. In the attached picture:
图1是传统的垂直沟道存储器器件的剖面图。FIG. 1 is a cross-sectional view of a conventional vertical channel memory device.
图2是根据本发明实施方式的NAND存储器的结构示意图;Fig. 2 is a schematic structural diagram of a NAND memory according to an embodiment of the present invention;
图3A-3D是根据本发明实施方式的NAND存储器的外围器件的制备步骤示意图;3A-3D are schematic diagrams of manufacturing steps of peripheral devices of a NAND memory according to an embodiment of the present invention;
图4A-4D是根据本发明实施方式的NAND存储器的阵列器件的制备步骤示意图;4A-4D are schematic diagrams of manufacturing steps of an array device of a NAND memory according to an embodiment of the present invention;
图5A-5C是根据本发明实施方式的阵列器件与外围器件粘结得到NAND存储器的制备步骤示意图。5A-5C are schematic diagrams of manufacturing steps of a NAND memory obtained by bonding an array device and a peripheral device according to an embodiment of the present invention.
图6是形成外围器件和外围互联层示例方法600的流程图。FIG. 6 is a flowchart of an example method 600 of forming peripheral devices and peripheral interconnect layers.
图7是形成阵列器件和阵列互联层示例方法700的流程图。FIG. 7 is a flowchart of an example method 700 of forming array devices and array interconnect layers.
图8是结合阵列器件和外围器件的示例方法800的流程图。FIG. 8 is a flowchart of an example method 800 of combining array devices and peripheral devices.
具体实施方式Detailed ways
下文将参照附图更充分地描述本发明的实施例,本发明的优选实施例在附图中示出。然而,本发明可以以不同的方式实施,而不应被解释为仅限于此处所述的实施例。在整个说明书中相同的附图标记始终指代相同的元件。Embodiments of the invention will be described more fully hereinafter with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. However, this invention may be embodied in various ways and should not be construed as limited to only the embodiments set forth herein. Like reference numerals refer to like elements throughout the specification.
应当理解,虽然这里可使用术语第一、第二等描述各种元件,但这些元件不应受限于这些术语。这些术语用于使一个元件区别于另一个元件。例如,第一元件可以称为第二元件,类似地,第二元件可以称为第一元件,而不背离本发明的范围。如此处所用的,术语“和/或”包括一个或多个所列相关项目的任意及所有组合。It will be understood that, although the terms first, second etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of the present invention. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items.
应当理解,当称一个元件在另一元件“上”、“连接到”或“耦合到”另一元件时,它可以直接在另一元件上或者连接到或耦合到另一元件,或者还可以存在插入的元件。相反,当称一个元件“直接在”另一元件上或者“直接连接到”或“直接耦合到”另一元件时,不存在插入的元件。其他的用于描述元件之间关系的词语应当以类似的方式解释(例如,“在...之间”相对于“直接在...之间”、“相邻”相对于“直接相邻”等)。这里当称一个元件在另一元件上时,它可以在另一元件上或下,直接耦合到另一元件,或者可以存在插入的元件,或者元件可以通过空隙或间隙分隔开。It will be understood that when an element is referred to as being "on," "connected to," or "coupled to" another element, it can be directly on, connected to, or coupled to the other element, or it can also be directly on, connected to, or coupled to the other element. There is an inserted component. In contrast, when an element is referred to as being "directly on" or "directly connected to" or "directly coupled to" another element, there are no intervening elements present. Other words used to describe the relationship between elements should be interpreted in a like fashion (eg, "between" versus "directly between," "adjacent" versus "directly adjacent "Wait). Here when an element is referred to as being on another element, it can be on or under the other element, directly coupled to the other element, or intervening elements may be present, or the elements may be separated by a gap or gap.
这里所用的术语仅仅是为了描述特定实施例,并非要限制本发明。如此处所用的,除非上下文另有明确表述,否则单数形式“一”和“该”均同时旨在包括复数形式。还应当理解,术语“包括”、“包括”、“包括”和/或“包括”,当在此处使用时,指定了所述特征、整体、步骤、操作、元件和/或组件的存在,但并不排除一个或多个其他的特征、整体、步骤、操作、元件、组件和/或其组合的存在或添加。The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms "a", "the" and "the" are both intended to include the plural forms, unless the context clearly dictates otherwise. It should also be understood that the terms "comprises", "comprises", "includes" and/or "comprising", when used herein, designate the presence of stated features, integers, steps, operations, elements and/or components, But it does not exclude the existence or addition of one or more other features, integers, steps, operations, elements, components and/or combinations thereof.
如图2所示,为根据本发明的优选实施例的示意性器件结构图。包括一个第一硅基板202。在一些实施例中,第一硅基板202可由单晶硅制成。在一些实施例中,第一硅基板202可由其他合适材料制成,例如但不限于,硅锗、锗、绝缘体上硅薄膜(SOI)。外围器件形成在第一硅基板202上。所述外围器件包括多个晶体管206。在一些实施例中,第一硅基板202上形成有隔离区204和掺杂区208。外围互联层222覆盖晶体管206以进行电信号传导。互联层222包括一个或多个触点,例如触点207和触点214,一个或多个互联导体层,例如层216和220。互联层222进一步包括一个或多个层间绝缘(ILD)层,例如绝缘层210、212和218。触点由导电材料制成,包括但不限于钨、钴、铜、铝、和/或硅化物。导电层由导电材料制成,包括但不限于钨、钴、铜、铝、和/或硅化物。层间绝缘层由绝缘材料制成,包括但不限于氧化硅、氮化硅、氮氧化硅、和/或掺杂氧化硅。As shown in FIG. 2 , it is a schematic device structure diagram according to a preferred embodiment of the present invention. A first silicon substrate 202 is included. In some embodiments, the first silicon substrate 202 may be made of single crystal silicon. In some embodiments, the first silicon substrate 202 may be made of other suitable materials, such as but not limited to, silicon germanium, germanium, silicon-on-insulator (SOI). Peripheral devices are formed on the first silicon substrate 202 . The peripheral devices include a plurality of transistors 206 . In some embodiments, an isolation region 204 and a doped region 208 are formed on the first silicon substrate 202 . The peripheral interconnection layer 222 covers the transistor 206 for electrical signal conduction. Interconnect layer 222 includes one or more contacts, such as contact 207 and contact 214 , and one or more interconnected conductor layers, such as layers 216 and 220 . Interconnect layer 222 further includes one or more interlayer insulating (ILD) layers, such as insulating layers 210 , 212 and 218 . The contacts are made of conductive materials including, but not limited to, tungsten, cobalt, copper, aluminum, and/or silicide. The conductive layer is made of conductive materials including, but not limited to, tungsten, cobalt, copper, aluminum, and/or silicide. The interlayer insulating layer is made of insulating materials, including but not limited to silicon oxide, silicon nitride, silicon oxynitride, and/or doped silicon oxide.
阵列器件形成在外围器件之上。阵列器件包括多个NAND串230,其延伸贯穿多个导体234和绝缘体236叠层242。多个导体/绝缘体叠层242也可称作等级层堆栈。在一些实施例中,等级层堆栈242可以包括比多个导体/绝缘体叠层更多的由不同材料制成和/或不同厚度的导体层或绝缘层。在一些实施例中,导体层234由导电材料制成,包括但不限于钨、钴、铜、铝、掺杂硅和/或硅化物。绝缘层236由绝缘材料制成,包括但不限于氧化硅、氮化硅、氮氧化硅或以上材料的组合。多个NAND串230包括半导体通道228和介质层229。在一些实施例中,半导体通道228由非结晶、多结晶、或单晶硅制成。在一些实施例中,介质层229包括一个隧道层,一个存储单元层和一个阻隔层。所述隧道层由氧化硅、氮化硅或者其组合制成。所述阻隔层由氧化硅、氮化硅、高绝缘常数绝缘材料或者其组合制成。存储单元层由氮化硅、氮氧化硅、硅或以上材料的组合制成。Array devices are formed over the peripheral devices. The array device includes a plurality of NAND strings 230 extending through a plurality of conductor 234 and insulator 236 stacks 242 . Multiple conductor/insulator stacks 242 may also be referred to as a hierarchical layer stack. In some embodiments, hierarchical layer stack 242 may include more conductor layers or insulating layers made of different materials and/or different thicknesses than multiple conductor/insulator stacks. In some embodiments, conductor layer 234 is made of a conductive material including, but not limited to, tungsten, cobalt, copper, aluminum, doped silicon, and/or silicide. The insulating layer 236 is made of insulating materials, including but not limited to silicon oxide, silicon nitride, silicon oxynitride or a combination of the above materials. Multiple NAND strings 230 include semiconductor channels 228 and dielectric layer 229 . In some embodiments, semiconductor channel 228 is made of amorphous, polycrystalline, or monocrystalline silicon. In some embodiments, the dielectric layer 229 includes a tunnel layer, a memory cell layer and a barrier layer. The tunnel layer is made of silicon oxide, silicon nitride or a combination thereof. The barrier layer is made of silicon oxide, silicon nitride, high insulation constant insulating material or a combination thereof. The memory cell layer is made of silicon nitride, silicon oxynitride, silicon or a combination of the above materials.
在一些实施例中,多个NAND串230包括多个控制门(或字线)。在一些实施例中,导体层234用作NAND串的控制门。在一些实施例中,多个NAND串230进一步包括选择门238,其形成在靠近NAND串的上端。在一些实施例中,多个NAND串230进一步包括选择门240,其形成在靠近NAND串的下端。在一些实施例中,选择门238和240由导电材料制成,包括但不限于钨、钴、铜、铝、掺杂硅和/或硅化物。In some embodiments, multiple NAND strings 230 include multiple control gates (or word lines). In some embodiments, conductor layer 234 acts as a control gate for the NAND strings. In some embodiments, the plurality of NAND strings 230 further includes select gates 238 formed near the upper ends of the NAND strings. In some embodiments, the plurality of NAND strings 230 further includes select gates 240 formed near the lower ends of the NAND strings. In some embodiments, select gates 238 and 240 are made of a conductive material including, but not limited to, tungsten, cobalt, copper, aluminum, doped silicon, and/or suicide.
在一些实施例中,多个NAND串230进一步包括外延硅层251,其覆盖形成在NAND串230的半导体通道228的上端。在一些实施例中,外延硅层251从单晶硅层244的外延生长而形成。In some embodiments, the plurality of NAND strings 230 further includes an epitaxial silicon layer 251 covering the upper ends of the semiconductor channels 228 formed in the NAND strings 230 . In some embodiments, epitaxial silicon layer 251 is formed from the epitaxial growth of single crystalline silicon layer 244 .
在一些实施例中,阵列器件进一步包括一个或多个源触点232,其延伸贯穿等级层堆栈242。在一些实施例中,源触点232由导电材料制成,包括但不限于钨、钴、铜、铝、和/或硅化物。In some embodiments, the array device further includes one or more source contacts 232 extending through the hierarchical layer stack 242 . In some embodiments, source contact 232 is made of a conductive material including, but not limited to, tungsten, cobalt, copper, aluminum, and/or suicide.
在一些实施例中,阵列器件进一步包括一个或多个字线触点258。在一些实施例中,多个字线触点在绝缘层259内垂直延伸。在一些实施例中,多个字线触点的每一个具有一个与字线接触的端,由此,阵列器件的每一个字线能够通过字线触点分别进行寻址。在一些实施例中,每一字线触点形成在字线之下并与所述字线连接。在一些实施例中,多个字线触点通过采用湿法蚀刻或干法蚀刻形成接触孔或接触沟槽,然后使用导体(例如钨)填充所述接触孔或接触沟槽。在一些实施例中,填充接触孔或接触沟槽包括在沉积所述导体前沉积阻挡层和/或粘结层。In some embodiments, the array device further includes one or more word line contacts 258 . In some embodiments, a plurality of wordline contacts extend vertically within insulating layer 259 . In some embodiments, each of the plurality of wordline contacts has an end in contact with the wordline, whereby each wordline of the array device can be individually addressed by the wordline contacts. In some embodiments, each wordline contact is formed below and connected to the wordline. In some embodiments, the plurality of word line contacts are formed by wet etching or dry etching to form contact holes or contact trenches, and then filling the contact holes or contact trenches with a conductor (eg, tungsten). In some embodiments, filling the contact hole or contact trench includes depositing a barrier layer and/or an adhesion layer prior to depositing the conductor.
在一些实施例中,阵列器件进一步包括单晶硅层244,其覆盖形成在NAND串230的上端。在一些实施例中,单晶硅层244由单晶硅制成。在一些实施例中,单晶硅层244也可以由其他材料制成,包括但不限于硅锗或锗。在一些实施例中,单晶硅层244具有掺杂区域250和隔离区246。In some embodiments, the array device further includes a single crystal silicon layer 244 formed overlying the upper ends of the NAND strings 230 . In some embodiments, single crystal silicon layer 244 is made of single crystal silicon. In some embodiments, the monocrystalline silicon layer 244 may also be made of other materials, including but not limited to silicon germanium or germanium. In some embodiments, monocrystalline silicon layer 244 has doped regions 250 and isolation regions 246 .
在一些实施例中,源触点232和NAND串230均与所述单晶硅层244接触,因此当单晶硅层244传导电信号时,源触点232能够与NAND串230电性连接(例如当单晶硅层244形成导电的反型层时)。In some embodiments, both the source contact 232 and the NAND string 230 are in contact with the single crystal silicon layer 244, so that when the single crystal silicon layer 244 conducts electrical signals, the source contact 232 can be electrically connected to the NAND string 230 ( For example, when the monocrystalline silicon layer 244 forms a conductive inversion layer).
在一些实施例中,阵列器件进一步包括一个或多个贯穿阵列触点241,其竖直延伸并贯穿等级层堆栈242。在一些实施例中,所述多个贯穿阵列触点241将电信号从外围器件传输到后段制程(BEOL)层254或衬垫层256。In some embodiments, the array device further includes one or more through-array contacts 241 extending vertically through the hierarchical layer stack 242 . In some embodiments, the plurality of through-array contacts 241 transmit electrical signals from peripheral devices to back end of line (BEOL) layer 254 or pad layer 256 .
在一些实施例中,阵列互联层223形成在外围互联层222的上方。在一些实施例中,阵列互联层223包括位线触点226、字线通孔接触257、一个或多个导体层(例如层224),和一个或多个绝缘层(例如绝缘层225和绝缘层221)。所述导体层可以由导电材料制成,包括但不限于钨、钴、铜、铝和/或硅化物。所述绝缘层由绝缘材料制成,包括但不限于氧化硅、氮化硅、高绝缘常数绝缘材料或者其组合。In some embodiments, the array interconnect layer 223 is formed over the peripheral interconnect layer 222 . In some embodiments, array interconnect layer 223 includes bitline contacts 226, wordline via contacts 257, one or more conductive layers (eg, layer 224), and one or more insulating layers (eg, insulating layer 225 and insulating layer 221). The conductor layer may be made of conductive materials including, but not limited to, tungsten, cobalt, copper, aluminum and/or silicide. The insulating layer is made of insulating materials, including but not limited to silicon oxide, silicon nitride, high insulating constant insulating materials or combinations thereof.
粘结界面219形成在外围互联层222的绝缘层218和阵列互联层223的绝缘层221之间。在一些实施例中,粘结界面219也可以形成在导体层224和导体层220之间。在一些实施例中,绝缘层218是氮化硅层而绝缘层221是氧化硅层。在一些实施例中,绝缘层218是氧化硅层而绝缘层221是氮化硅层。The bonding interface 219 is formed between the insulating layer 218 of the peripheral interconnection layer 222 and the insulating layer 221 of the array interconnection layer 223 . In some embodiments, bonding interface 219 may also be formed between conductor layer 224 and conductor layer 220 . In some embodiments, insulating layer 218 is a silicon nitride layer and insulating layer 221 is a silicon oxide layer. In some embodiments, insulating layer 218 is a silicon oxide layer and insulating layer 221 is a silicon nitride layer.
在一些实施例中,位线触点226接触多个NAND串230的底端。在一些实施例中,每个位线触点226分别与一个NAND串230接触,从而位线触点分别独立寻址每个NAND串。In some embodiments, the bit line contacts 226 contact the bottom ends of the plurality of NAND strings 230 . In some embodiments, each bitline contact 226 contacts a respective NAND string 230 such that the bitline contacts independently address each NAND string.
在一些实施例中,所述字线通孔接触257与所述多个字线触点258的低端接触。在一些实施例中,每一个字线通孔接触257与每一个字线触点258接触,由此,字线通孔可以分别于每一个NAND串分别寻址。In some embodiments, the wordline via contact 257 is in contact with the lower end of the plurality of wordline contacts 258 . In some embodiments, each wordline via contact 257 is in contact with each wordline contact 258, whereby the wordline vias can be individually addressed for each NAND string.
图2所示的优选实施例进一步包括一个或多个后段制程互联绝缘层和导体层(例如导体层248,导体层254和绝缘层252)和衬垫层(例如衬垫层256)。所述后段制程互联层和衬垫层在所述实施例的装置和外部电路之间传送电信号。后段制程导体层可以由导电材料制成,包括但不限于钨、钴、铜、铝和/或硅化物。所述后段制程绝缘层由绝缘材料制成,包括但不限于氧化硅、氮化硅、高绝缘常数绝缘材料或者其组合。衬垫层由导电材料制成,包括但不限于钨、钴、铜、铝和/或硅化物。The preferred embodiment shown in FIG. 2 further includes one or more back-end-of-line interconnect insulating and conductor layers (eg, conductor layer 248, conductor layer 254, and insulating layer 252) and liner layers (eg, liner layer 256). The back-end-of-line interconnect and liner layers carry electrical signals between the device of the embodiments and external circuitry. The back-end-of-line conductor layer may be made of conductive materials including, but not limited to, tungsten, cobalt, copper, aluminum, and/or silicide. The back-end-of-process insulating layer is made of insulating materials, including but not limited to silicon oxide, silicon nitride, high insulating constant insulating materials or combinations thereof. The liner layer is made of a conductive material including, but not limited to, tungsten, cobalt, copper, aluminum and/or silicide.
图3A-3D是根据本发明实施方式的NAND存储器的外围器件和外围互联层的制备步骤示意图;图6是形成外围器件和外围互联层示例方法600的流程图。3A-3D are schematic diagrams of manufacturing steps of peripheral devices and peripheral interconnection layers of a NAND memory according to an embodiment of the present invention; FIG. 6 is a flowchart of an example method 600 of forming peripheral devices and peripheral interconnection layers.
示例方法600开始于操作602,如图6所示,即在第一硅基板上形成外围器件。如图3A所示,首先提供了第一硅基板302,用以形成外围器件在一些实施例中,外围器件包括多个晶体管器件304。所述多个晶体管器件304形成在第一硅基板302上。在一些实施例中,形成晶体管器件304包括多个步骤,包括但不限于光刻、干法/湿法刻蚀、薄膜沉淀、热生长、注入、化学机械平坦化(CMP)、和/或以上的组合。在一些实施例中,掺杂区308也形成在第一硅基板302上。在一些实施例中,隔离区306也形成在第一硅基板302上。The example method 600 begins at operation 602 , as shown in FIG. 6 , by forming peripheral devices on a first silicon substrate. As shown in FIG. 3A , firstly, a first silicon substrate 302 is provided to form peripheral devices. In some embodiments, the peripheral devices include a plurality of transistor devices 304 . The plurality of transistor devices 304 are formed on a first silicon substrate 302 . In some embodiments, forming transistor device 304 includes multiple steps, including but not limited to photolithography, dry/wet etching, thin film deposition, thermal growth, implantation, chemical mechanical planarization (CMP), and/or the above The combination. In some embodiments, a doped region 308 is also formed on the first silicon substrate 302 . In some embodiments, an isolation region 306 is also formed on the first silicon substrate 302 .
示例方法600继续于操作604,如图6所示,在外围器件上形成一个或多个绝缘层和导体层。所述一个或多个绝缘层和导体层是外围互联层的一部分,能够传输外围器件的电信号。如图3B所示,第一层绝缘层310形成在第一硅基板302上,接触层308形成并电性连接外围器件。如图3C所示,第二绝缘层316形成在第一绝缘层310上。在一些实施例中,第二绝缘层316可以是多个层的组合并且由独立步骤形成。导体层312和接触层314形成在第二绝缘层316上。在一些实施例中,导体层312、接触层308和导体层314由导电材料制成。形成导体层和接触层的工艺可以使用薄膜沉淀工艺,包括但不限于化学气相沉积法(CVD)、物理气相沉积法(PVD)、或原子层沉积法(ALD)和电镀工艺。形成导体层和接触层的工艺也可以使用光刻、化学机械平坦化、干法/湿法刻蚀。形成绝缘层的工艺可以使用薄膜沉淀工艺,包括但不限于化学气相沉积法(CVD)、物理气相沉积法(PVD)、或原子层沉积法(ALD)。The example method 600 continues at operation 604 , as shown in FIG. 6 , by forming one or more insulating and conductive layers on the peripheral device. The one or more insulating layers and conductor layers are part of the peripheral interconnection layer, capable of transmitting electrical signals of peripheral devices. As shown in FIG. 3B , a first insulating layer 310 is formed on the first silicon substrate 302 , and a contact layer 308 is formed and electrically connected to peripheral devices. As shown in FIG. 3C , a second insulating layer 316 is formed on the first insulating layer 310 . In some embodiments, the second insulating layer 316 may be a combination of layers and formed in separate steps. The conductor layer 312 and the contact layer 314 are formed on the second insulating layer 316 . In some embodiments, conductor layer 312, contact layer 308, and conductor layer 314 are made of a conductive material. The process of forming the conductor layer and the contact layer may use a thin film deposition process, including but not limited to chemical vapor deposition (CVD), physical vapor deposition (PVD), or atomic layer deposition (ALD) and electroplating process. The process of forming the conductor layer and the contact layer can also use photolithography, chemical mechanical planarization, dry/wet etching. The process of forming the insulating layer may use a thin film deposition process, including but not limited to chemical vapor deposition (CVD), physical vapor deposition (PVD), or atomic layer deposition (ALD).
示例方法600继续于操作606,如图6所示,形成外围互联层的一个顶部绝缘层和一个顶部导体层。如图3D所示,第三绝缘层318形成在第二绝缘层316上,导体层320形成在第三绝缘层318内。如此形成了外围互联层322。形成导体层的工艺可以使用薄膜沉淀工艺,包括但不限于化学气相沉积法(CVD)、物理气相沉积法(PVD)、或原子层沉积法(ALD)和电镀工艺。形成导体层和接触层的工艺也可以使用光刻、化学机械平坦化、干法/湿法刻蚀。形成绝缘层的工艺可以使用薄膜沉淀工艺,包括但不限于化学气相沉积法(CVD)、物理气相沉积法(PVD)、或原子层沉积法(ALD)。The example method 600 continues at operation 606, as shown in FIG. 6, forming a top insulating layer and a top conductor layer of the peripheral interconnect layer. As shown in FIG. 3D , a third insulating layer 318 is formed on the second insulating layer 316 , and a conductive layer 320 is formed in the third insulating layer 318 . The peripheral interconnect layer 322 is thus formed. The process of forming the conductor layer may use a thin film deposition process, including but not limited to chemical vapor deposition (CVD), physical vapor deposition (PVD), or atomic layer deposition (ALD) and electroplating process. The process of forming the conductor layer and the contact layer can also use photolithography, chemical mechanical planarization, dry/wet etching. The process of forming the insulating layer may use a thin film deposition process, including but not limited to chemical vapor deposition (CVD), physical vapor deposition (PVD), or atomic layer deposition (ALD).
图4A-4D是根据本发明实施方式的NAND存储器的阵列器件和阵列互联层的制备步骤示意图;图7是形成阵列器件和阵列互联层示例方法700的流程图。4A-4D are schematic diagrams of manufacturing steps of an array device and an array interconnection layer of a NAND memory according to an embodiment of the present invention; FIG. 7 is a flow chart of an exemplary method 700 for forming an array device and an array interconnection layer.
示例方法700开始于操作702,如图7所示,在第二硅基板上形成掺杂区和隔离区。如图4A所示,第二硅基板402用于形成阵列器件。在一些实施例中,掺杂区404形成在第二硅基板402上。在一些实施例中,隔离区406形成在第二硅基板402上。形成掺杂区404可以使用注入和/或扩散工艺。形成隔离区406的工艺可以采用热生长或薄膜沉淀。光刻和干法/湿法刻蚀工艺可用于形成隔离区图案。The example method 700 begins at operation 702, as shown in FIG. 7, forming doped regions and isolation regions on a second silicon substrate. As shown in FIG. 4A, the second silicon substrate 402 is used to form an array device. In some embodiments, the doped region 404 is formed on the second silicon substrate 402 . In some embodiments, an isolation region 406 is formed on the second silicon substrate 402 . Forming the doped region 404 may use implantation and/or diffusion processes. The process of forming the isolation region 406 may adopt thermal growth or thin film deposition. Photolithography and dry/wet etching processes can be used to pattern the isolation regions.
示例方法700继续于操作704,如图7所示,在第二硅基板上形成多个绝缘层对。如图4B所示,多个绝缘层对410和412形成在第二硅基板402上。在一些实施例中,多个绝缘层对形成等级层堆栈408。在一些实施例中,绝缘层对包括氮化硅层410和氧化硅层412。在一些实施例中,等级层堆栈408中具有更多的绝缘层对,所述绝缘层对由不同材料制成并具有不同厚度。在一些实施例中,形成多个绝缘层对的工艺可以使用薄膜沉淀工艺,包括但不限于化学气相沉积法(CVD)、物理气相沉积法(PVD)、或原子层沉积法(ALD)。The example method 700 continues with operation 704, as shown in FIG. 7, forming a plurality of insulating layer pairs on the second silicon substrate. As shown in FIG. 4B , a plurality of insulating layer pairs 410 and 412 are formed on the second silicon substrate 402 . In some embodiments, multiple insulating layer pairs form hierarchical layer stack 408 . In some embodiments, the pair of insulating layers includes a silicon nitride layer 410 and a silicon oxide layer 412 . In some embodiments, there are more pairs of insulating layers in the hierarchical layer stack 408 that are made of different materials and have different thicknesses. In some embodiments, the process of forming the plurality of insulating layer pairs may use a thin film deposition process, including but not limited to chemical vapor deposition (CVD), physical vapor deposition (PVD), or atomic layer deposition (ALD).
示例方法700继续于操作706,如图7所示,在第二硅基板上形成多个阵列器件的NAND串。如图4C所示,多个NAND串418形成在第二硅基板402上。在一些实施例中,等级层堆栈408的绝缘层对中的绝缘层410可以替换为导体层416,从而在等级层堆栈414中形成多个导体/绝缘层对。在一些实施例中,使用导体层416替换绝缘层410的工艺可以采用对于绝缘层412有选择性的湿法刻蚀方法刻蚀绝缘层410,这种刻蚀不刻蚀或微量刻蚀绝缘层412,然后将导体层416填入绝缘层410被刻蚀后形成的结构中。在一些实施例中,填充导体层416可以采用CVD、ALD和其他合适的方法。在一些实施例中,导体层416由导电材料制成,包括但不限于钨、钴、铜、铝和/或硅化物。在一些实施例中,形成NAND串进一步包括形成半导体通道420,其在竖直方向延伸并穿过所述等级层堆栈414。在一些实施例中,形成NAND串进一步包括介质层422,其位于半导体通道420和多个导体/绝缘层对之间。在一些实施例中,介质层422是多个层的组合,包括但不限于隧道层、存储单元层、和阻隔层。在一些实施例中,所述隧道层包括绝缘材料,包括但不限于氧化硅、氮化硅、氮氧化硅或上述材料的组合。在一些实施例中,存储单元层包括的材料可以用于存储操作NAND的电荷。存储单元层的材料包括但不限于氮化硅、氮氧化硅、或氧化硅和氮化硅的组合、或上述材料的组合。在一些实施例中,所述阻隔层包括绝缘材料,例如一个氧化硅层或一个包含氧化硅/氮化硅/氧化硅(ONO)的复合层。在一些实施例中,所述阻隔层可以进一步包括一个高K介电层(例如氧化铝)。在一些实施例中,形成介质层422可以采用ALD、CVD、PVD和其他合适的方法。The example method 700 continues at operation 706 , as shown in FIG. 7 , forming a plurality of NAND strings of array devices on a second silicon substrate. As shown in FIG. 4C , a plurality of NAND strings 418 are formed on the second silicon substrate 402 . In some embodiments, insulating layer 410 in insulating layer pairs of hierarchical layer stack 408 may be replaced with conductive layer 416 , thereby forming multiple conductor/insulating layer pairs in hierarchical layer stack 414 . In some embodiments, the process of replacing the insulating layer 410 with the conductive layer 416 may use a wet etching method that is selective to the insulating layer 412 to etch the insulating layer 410, and this etching does not etch or slightly etches the insulating layer. 412 , and then fill the conductive layer 416 into the structure formed after the insulating layer 410 is etched. In some embodiments, CVD, ALD, and other suitable methods may be used to fill the conductive layer 416 . In some embodiments, conductor layer 416 is made of a conductive material including, but not limited to, tungsten, cobalt, copper, aluminum, and/or silicide. In some embodiments, forming a NAND string further includes forming a semiconductor channel 420 extending in a vertical direction through the hierarchical layer stack 414 . In some embodiments, forming the NAND string further includes a dielectric layer 422 positioned between the semiconductor channel 420 and the plurality of conductor/insulator layer pairs. In some embodiments, the dielectric layer 422 is a combination of multiple layers including, but not limited to, tunnel layers, memory cell layers, and barrier layers. In some embodiments, the tunnel layer includes an insulating material, including but not limited to silicon oxide, silicon nitride, silicon oxynitride, or a combination of the above materials. In some embodiments, the memory cell layer includes materials that can be used to store charge to operate the NAND. The material of the memory cell layer includes but not limited to silicon nitride, silicon oxynitride, or a combination of silicon oxide and silicon nitride, or a combination of the above materials. In some embodiments, the barrier layer comprises an insulating material, such as a silicon oxide layer or a composite layer comprising silicon oxide/silicon nitride/silicon oxide (ONO). In some embodiments, the barrier layer may further include a high-K dielectric layer (eg, alumina). In some embodiments, ALD, CVD, PVD and other suitable methods may be used to form the dielectric layer 422 .
在一些实施例中,形成NAND串进一步包括形成在所述NAND串一端的外延层。如图4C所示,外延层426形成在NAND串418的底端。在一些实施例中,外延层426是硅层,其与第二硅基板402直接接触并且从第二硅基板402上外延生长。在一些实施例中,外延层426进一步被掺杂到期望的掺杂水平。In some embodiments, forming the NAND string further includes forming an epitaxial layer at one end of the NAND string. Epitaxial layer 426 is formed at the bottom of NAND string 418 as shown in FIG. 4C . In some embodiments, epitaxial layer 426 is a silicon layer that is in direct contact with and epitaxially grown from second silicon substrate 402 . In some embodiments, epitaxial layer 426 is further doped to a desired doping level.
在一些实施例中,操作706进一步包括形成一个或多个源触点。如图4C所示,垂直延伸并贯穿等级层堆栈414的源触点424形成在第二硅基板402上。在一些实施例中,源触点424的一端直接接触第二硅基板402的掺杂区404。在一些实施例中,源触点424通过第二硅基板402的接触掺杂区404电性连接多个NAND串418。在一些实施例中,选择门428形成在等级层堆栈414的底端,并通过开关第二硅基板402的接触掺杂区404来控制源触点424和多个NAND串418之间的导电。在一些实施例中,源触点424由导电材料制成,包括但不限于钨、钴、铜、铝、掺杂硅、硅化物或以上材料的组合。在一些实施例中,形成源触点424可以通过使用干法/湿法刻蚀工艺来形成垂直贯穿等级层堆栈414的开口,然后将导体材料或者其他材料例如绝缘材料填充所述开口。所述填充材料可以采用ALD、CVD、PVD和其他合适的方法。In some embodiments, operation 706 further includes forming one or more source contacts. As shown in FIG. 4C , a source contact 424 extending vertically through the hierarchical layer stack 414 is formed on the second silicon substrate 402 . In some embodiments, one end of the source contact 424 directly contacts the doped region 404 of the second silicon substrate 402 . In some embodiments, the source contact 424 is electrically connected to the plurality of NAND strings 418 through the contact doped region 404 of the second silicon substrate 402 . In some embodiments, select gate 428 is formed at the bottom of hierarchical layer stack 414 and controls conduction between source contact 424 and plurality of NAND strings 418 by switching contact doped region 404 of second silicon substrate 402 . In some embodiments, source contact 424 is made of a conductive material including, but not limited to, tungsten, cobalt, copper, aluminum, doped silicon, silicide, or combinations thereof. In some embodiments, the source contact 424 may be formed by using a dry/wet etching process to form an opening vertically penetrating through the hierarchical layer stack 414 , and then filling the opening with a conductive material or other material such as an insulating material. The filling material can use ALD, CVD, PVD and other suitable methods.
在一些实施例中,操作706进一步包括形成一个或多个贯穿阵列触点。如图4C所示,贯穿阵列触点431形成在第二硅基板402上。贯穿阵列触点431垂直延伸并贯穿等级层堆栈414。在一些实施例中,贯穿阵列触点431的一端进入第二硅基板402的隔离区406。在一些实施例中,形成贯穿阵列触点431可以通过使用干法/湿法刻蚀工艺来形成垂直贯穿等级层堆栈414的开口,然后将导体材料填充开口。在一些实施例中,其他材料例如绝缘材料433部分填充所述开口以达到隔离目的。在一些实施例中,贯穿阵列触点431包含导电材料,导电材料包括但不限于钨、钴、铜、铝、掺杂硅、硅化物或以上材料的组合。在一些实施例中,使用导体材料或者其他材料填充所述开口可以采用ALD、CVD、PVD和/或其他合适的方法。In some embodiments, operation 706 further includes forming one or more through-array contacts. As shown in FIG. 4C , through-array contacts 431 are formed on the second silicon substrate 402 . Through-array contacts 431 extend vertically and through hierarchical layer stack 414 . In some embodiments, one end of the through-array contact 431 enters the isolation region 406 of the second silicon substrate 402 . In some embodiments, the through-array contacts 431 may be formed by using a dry/wet etch process to form openings vertically through the hierarchical layer stack 414 and then filling the openings with conductive material. In some embodiments, other materials such as insulating material 433 partially fill the openings for isolation purposes. In some embodiments, through-array contacts 431 comprise conductive materials including, but not limited to, tungsten, cobalt, copper, aluminum, doped silicon, silicide, or combinations thereof. In some embodiments, ALD, CVD, PVD, and/or other suitable methods may be used to fill the openings with conductive or other materials.
在一些实施例中,操作706进一步包括形成一个或多个字线接触点。如图4C所示,字线接触点425形成在第二硅基板402上。字线接触点425垂直延伸并贯穿绝缘层423。在一些实施例中,字线接触点425的一端位于NAND串的字线上。例如,一个导体层416可以作为NAND串的一个字线。由此,字线接触点425电连接到导体层416。在一些实施例中,每一个字线接触点425的与一个导体层416连接,由此,导体层416通过字线接触点是可寻址的。在一些实施例中,字线接触点425能够进一步设置在硅基板402上或NAND串(例如,选择门428和/或选择门430)的选择门上。在一些实施例中,形成字线接触点425包括使用干法/湿法蚀刻工艺形成通过绝缘层423的垂直开口,然后将导体材料或者其他材料,例如用于导体填充、粘结和/或其它目的阻隔层材料填充所述开口。在一些实施例中,贯穿阵列接触点425的导体材料由导体材料制成,包括但不限于钨、钴、铜、铝、掺杂硅、硅化物或以上材料的组合。在一些实施例中,使用导体材料或者其他材料填充所述开口可以采用ALD、CVD、PVD和/或其他合适的方法。In some embodiments, operation 706 further includes forming one or more word line contacts. As shown in FIG. 4C , word line contacts 425 are formed on the second silicon substrate 402 . The word line contact 425 extends vertically and penetrates the insulating layer 423 . In some embodiments, one end of the word line contact 425 is located on the word line of the NAND string. For example, one conductor layer 416 can serve as one word line of a NAND string. Thus, the word line contact 425 is electrically connected to the conductor layer 416 . In some embodiments, each of the wordline contacts 425 is connected to one conductor layer 416, whereby the conductor layer 416 is addressable through the wordline contacts. In some embodiments, word line contacts 425 can be further disposed on silicon substrate 402 or on a select gate of a NAND string (eg, select gate 428 and/or select gate 430 ). In some embodiments, forming the word line contact 425 includes forming a vertical opening through the insulating layer 423 using a dry/wet etch process, and then applying a conductor material or other material, such as for conductor filling, bonding and/or other The barrier layer material of interest fills the opening. In some embodiments, the conductor material that runs through the array contacts 425 is made of a conductor material including, but not limited to, tungsten, cobalt, copper, aluminum, doped silicon, silicide, or combinations thereof. In some embodiments, ALD, CVD, PVD, and/or other suitable methods may be used to fill the openings with conductive or other materials.
示例方法700继续于操作708,如图7所示,在多个NAND串上形成阵列互联层。如图4D所示,阵列互联层438形成在多个NAND串418上。阵列互联层用于传输NAND串和其他电路之间的电信号。在一些实施例中,形成阵列互联层438包括形成绝缘层434,然后形成多个位线触点432,其在绝缘层434中并与NAND串418接触。在一些实施例中,绝缘层434是一层或多层绝缘材料,例如氧化硅、氮化硅、氮氧化硅或者其组合。在一些实施例中,位线触点432的形成过程为:首先在绝缘层434中形成开口,然后使用导体材料或绝缘材料填充所述开口。在一些实施例中,制造位线触点432的导体材料包括但不限于钨、钴、铜、铝、掺杂硅、硅化物或以上材料的组合。在一些实施例中,使用导体材料或者其他材料填充所述开口可以采用ALD、CVD、PVD和/或其他合适的方法。The example method 700 continues at operation 708 where, as shown in FIG. 7 , an array interconnect layer is formed on the plurality of NAND strings. As shown in FIG. 4D , an array interconnect layer 438 is formed over the plurality of NAND strings 418 . The array interconnect layer is used to transmit electrical signals between the NAND strings and other circuits. In some embodiments, forming array interconnect layer 438 includes forming insulating layer 434 and then forming a plurality of bit line contacts 432 in insulating layer 434 and in contact with NAND strings 418 . In some embodiments, the insulating layer 434 is one or more layers of insulating materials, such as silicon oxide, silicon nitride, silicon oxynitride, or combinations thereof. In some embodiments, the bit line contact 432 is formed by first forming an opening in the insulating layer 434 and then filling the opening with a conductive material or an insulating material. In some embodiments, the conductor material of the bit line contact 432 includes, but is not limited to, tungsten, cobalt, copper, aluminum, doped silicon, silicide, or a combination thereof. In some embodiments, ALD, CVD, PVD, and/or other suitable methods may be used to fill the openings with conductive or other materials.
在一些实施例中,形成阵列互联层438进一步包括在绝缘层437上形成多个字线通孔接触437。在一些实施例中,每一个字线通孔接触437与字线接触点425的一端接触以能够进行电连接。在一些实施例中,字线通孔接触437通过在绝缘层434中形成开口,然后使用导体材料进行填充来形成。在一些实施例中,在填充导体材料之前,使用其他材料例如隔离材料部分填充所述开口以增强所述导体材料的粘性或填充性能。在一些实施例中,形成字线通孔接触的导体材料包括但不限于钨、钴、铜、铝、掺杂硅、硅化物或或以上材料的组合。在一些实施例中,使用导体材料和隔离材料填充所述开口,可以采用ALD、CVD、PVD和/或其他合适的方法。In some embodiments, forming the array interconnect layer 438 further includes forming a plurality of word line via contacts 437 on the insulating layer 437 . In some embodiments, each wordline via contact 437 is in contact with one end of the wordline contact 425 to enable electrical connection. In some embodiments, the wordline via contact 437 is formed by forming an opening in the insulating layer 434 and then filling it with a conductive material. In some embodiments, prior to filling the conductive material, the opening is partially filled with other material, such as an insulating material, to enhance the viscosity or filling performance of the conductive material. In some embodiments, the conductive material forming the word line via contact includes, but is not limited to, tungsten, cobalt, copper, aluminum, doped silicon, silicide, or a combination thereof. In some embodiments, the opening is filled with a conductor material and an isolation material, and ALD, CVD, PVD, and/or other suitable methods may be used.
在一些实施例中,形成阵列互联层438进一步包括形成其他导电层,例如在绝缘层434中的导体层440和导体接触层444。在一些实施例中,具有一个或多个导体层440和/或导体接触层444。在一些实施例中,制造导体层440和导体接触层444的导体材料包括但不限于钨、钴、铜、铝、掺杂硅、硅化物或以上材料的组合。形成导体层和导体接触层的工艺可以采用公知的后段制程方法。In some embodiments, forming the array interconnection layer 438 further includes forming other conductive layers, such as the conductor layer 440 and the conductor contact layer 444 in the insulating layer 434 . In some embodiments, there are one or more conductor layers 440 and/or conductor contact layers 444 . In some embodiments, the conductive material for making the conductive layer 440 and the conductive contact layer 444 includes, but is not limited to, tungsten, cobalt, copper, aluminum, doped silicon, silicide, or a combination thereof. The process of forming the conductor layer and the conductor contact layer can adopt a known back-end process method.
在一些实施例中,形成阵列互联层438进一步包括形成顶部导电层442和顶部绝缘层436。在一些实施例中,制造顶部导电层442的导体材料包括但不限于钨、钴、铜、铝、掺杂硅、硅化物或以上材料的组合。在一些实施例中,制造顶部绝缘层436的绝缘材料包括但不限于氧化硅、氮化硅、氮氧化硅、或上述材料的组合。In some embodiments, forming the array interconnection layer 438 further includes forming a top conductive layer 442 and a top insulating layer 436 . In some embodiments, the conductive material for making the top conductive layer 442 includes, but is not limited to, tungsten, cobalt, copper, aluminum, doped silicon, silicide, or a combination thereof. In some embodiments, the insulating material for making the top insulating layer 436 includes but is not limited to silicon oxide, silicon nitride, silicon oxynitride, or a combination of the above materials.
图5A-5C是根据本发明实施方式的结合上述阵列器件和外围器件的步骤示意图;图8是结合上述阵列器件和外围器件的示例方法800的流程图。5A-5C are schematic diagrams of steps of combining the aforementioned array device and peripheral devices according to an embodiment of the present invention; FIG. 8 is a flowchart of an example method 800 of combining the aforementioned array device and peripheral devices.
示例性方法800开始于步骤802,如图8所示,将第二硅基板上的阵列器件上下倒置从而使得阵列互联层位于第二硅基板下方,并将阵列互联层和外围互联层对齐。如图5A所示,阵列互联层438被置于第二硅基板402下方。在一些实施例中,对齐阵列互联层438和外围互联层322的方法为对齐阵列互联层438的导体层442和外围互联层322的导体层320。如此,当阵列器件和外围器件结合时导体层442与320接触。Exemplary method 800 starts at step 802. As shown in FIG. 8, the array device on the second silicon substrate is turned upside down so that the array interconnection layer is located under the second silicon substrate, and the array interconnection layer and the peripheral interconnection layer are aligned. As shown in FIG. 5A , an array interconnection layer 438 is disposed under the second silicon substrate 402 . In some embodiments, the method of aligning the array interconnection layer 438 and the peripheral interconnection layer 322 is to align the conductor layer 442 of the array interconnection layer 438 and the conductor layer 320 of the peripheral interconnection layer 322 . As such, the conductor layer 442 is in contact with the 320 when the array device and the peripheral device are combined.
示例性方法800继续于步骤804,如图8所示,结合阵列互联层和外围互联层。如图5B所示,阵列互联层438和外围互联层322结合并形成粘结界面503。在一些实施例中,如图5A所示,在两个互联层结合之前或结合时,处理工艺502可用于加强阵列互联层和外围互联层之间的结合力。在一些实施例中,绝缘层436为氧化硅层而绝缘层318为氮化硅层。在一些实施例中,绝缘层436为氮化硅层而绝缘层318为氧化硅层。在一些实施例中,处理工艺502包括等离子体处理工艺,处理阵列互联层的表面和外围互联层的表面以增强在两个绝缘层436和318之间形成的化学结合。在一些实施例中,处理工艺502包括湿法化学处理工艺,处理阵列互联层的表面和外围互联层的表面以增强在两个绝缘层436和318之间形成的化学结合。Exemplary method 800 continues at step 804, as shown in FIG. 8, in conjunction with the array interconnect layer and the peripheral interconnect layer. As shown in FIG. 5B , the array interconnection layer 438 and the peripheral interconnection layer 322 are combined to form an adhesive interface 503 . In some embodiments, as shown in FIG. 5A , before or when the two interconnect layers are bonded, the treatment process 502 can be used to strengthen the bonding force between the array interconnect layer and the peripheral interconnect layer. In some embodiments, insulating layer 436 is a silicon oxide layer and insulating layer 318 is a silicon nitride layer. In some embodiments, insulating layer 436 is a silicon nitride layer and insulating layer 318 is a silicon oxide layer. In some embodiments, the treatment process 502 includes a plasma treatment process to treat the surface of the array interconnect layer and the surface of the peripheral interconnect layer to enhance the chemical bond formed between the two insulating layers 436 and 318 . In some embodiments, the treatment process 502 includes a wet chemical treatment process that treats the surface of the array interconnect layer and the surface of the peripheral interconnect layer to enhance the chemical bond formed between the two insulating layers 436 and 318 .
在一些实施例中,处理工艺502为热处理工艺,在结合工艺中进行。在一些实施例中,热处理的操作温度是250℃到600℃。在一些实施例中,热处理工艺使得导体层442和320之间产生互扩散。由此,导体442和320在结合处理后相互混合。在一些实施例中,导体层442和320都由铜制成。In some embodiments, the treatment process 502 is a heat treatment process performed in a bonding process. In some embodiments, the operating temperature of the heat treatment is 250°C to 600°C. In some embodiments, the heat treatment process causes interdiffusion between the conductor layers 442 and 320 . Thus, the conductors 442 and 320 are mixed with each other after the bonding process. In some embodiments, both conductor layers 442 and 320 are made of copper.
示例性方法800继续于步骤806,如图8所示,减薄第二硅基板以形成一个单晶硅层。如图5B所示,根据本发明的实施例,第二硅基板402减薄以形成单晶硅层504。在一些实施例中,经过减薄,单晶硅层504的厚度介于200nm到5000nm之间。在一些实施例中,单晶硅层504的厚度介于150nm到50μm之间。在一些实施例中,减薄所述第二硅基板402的工艺包括但不限于晶圆研磨、干法刻蚀、湿法刻蚀、化学机械抛光或上述工艺的组合。Exemplary method 800 continues at step 806, as shown in FIG. 8, by thinning the second silicon substrate to form a monocrystalline silicon layer. As shown in FIG. 5B , according to an embodiment of the present invention, the second silicon substrate 402 is thinned to form a single crystal silicon layer 504 . In some embodiments, the thickness of the monocrystalline silicon layer 504 is between 200 nm and 5000 nm after thinning. In some embodiments, the thickness of the monocrystalline silicon layer 504 is between 150 nm and 50 μm. In some embodiments, the process of thinning the second silicon substrate 402 includes but not limited to wafer grinding, dry etching, wet etching, chemical mechanical polishing or a combination of the above processes.
示例性方法800继续于步骤808,如图8所示,在单晶硅层上形成后段制程互联层和衬垫层。如图5C所示,单晶硅层504上形成后段制程互联层和衬垫层512。在一些实施例中,后段制程互联层包括一个或多个绝缘层506、一个或多个触点508和一个或多个导体层510。在一些实施例中,绝缘层506是多个绝缘层的组合,所述多个绝缘层可以通过独立的步骤制作。在一些实施例中,触点508、导体层510和衬垫层512可由导电材料制成,包括但不限于钨、钴、铜、铝、掺杂硅、硅化物或以上材料的组合。在一些实施例中,制造绝缘层506的绝缘材料包括但不限于氧化硅、氮化硅、氮氧化硅、或上述材料的组合。在一些实施例中,绝缘层506可进一步包括高K绝缘材料。在一些实施例中,衬垫层512与外部电路连接以在结合的阵列/外围器件和外部电路之间传递电信号。Exemplary method 800 continues at step 808 , as shown in FIG. 8 , by forming a back-end-of-line interconnection layer and a liner layer on the single crystal silicon layer. As shown in FIG. 5C , a back-end-of-process interconnection layer and a liner layer 512 are formed on the single crystal silicon layer 504 . In some embodiments, the back-end-of-line interconnect layer includes one or more insulating layers 506 , one or more contacts 508 , and one or more conductor layers 510 . In some embodiments, insulating layer 506 is a combination of multiple insulating layers, which may be fabricated in separate steps. In some embodiments, contacts 508, conductor layer 510, and liner layer 512 may be made of conductive materials including, but not limited to, tungsten, cobalt, copper, aluminum, doped silicon, silicide, or combinations thereof. In some embodiments, the insulating material for making the insulating layer 506 includes but is not limited to silicon oxide, silicon nitride, silicon oxynitride, or a combination of the above materials. In some embodiments, insulating layer 506 may further include a high-K insulating material. In some embodiments, pad layer 512 is connected to external circuitry to pass electrical signals between the combined array/peripheral device and the external circuitry.
总之,本发明通过将阵列器件和外围器件的制作分开,避免了两个器件制造时互相影响对方的制作过程,解决了现有技术中后面的层的制作受前面的层制作后温度限制的问题,获得了高器件密度和良好的外围器件性能。In a word, the present invention separates the manufacture of the array device and the peripheral device, avoiding the manufacturing process of the two devices affecting each other during manufacture, and solving the problem in the prior art that the manufacture of the latter layer is limited by the temperature after the manufacture of the front layer , obtained high device density and good peripheral device performance.
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。The above is only a preferred embodiment of the present invention, but the scope of protection of the present invention is not limited thereto. Any person skilled in the art within the technical scope disclosed in the present invention can easily think of changes or Replacement should be covered within the protection scope of the present invention. Therefore, the protection scope of the present invention should be determined by the protection scope of the claims.
Claims (11)
Priority Applications (14)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710716657.1A CN107658315B (en) | 2017-08-21 | 2017-08-21 | Semiconductor device and preparation method thereof |
KR1020197037473A KR102369603B1 (en) | 2017-08-21 | 2018-03-01 | 3D memory device and method for forming the same |
JP2020502283A JP7304335B2 (en) | 2017-08-21 | 2018-03-01 | NAND memory device and method for forming NAND memory device |
PCT/CN2018/077750 WO2019037403A1 (en) | 2017-08-21 | 2018-03-01 | Three-dimensional memory devices and methods for forming the same |
EP18849168.2A EP3580782A4 (en) | 2017-08-21 | 2018-03-01 | THREE-DIMENSIONAL MEMORY COMPONENTS AND METHOD FOR SHAPING THEM |
CN201880005615.XA CN110121779B (en) | 2017-08-21 | 2018-03-01 | Three-dimensional memory device and method for forming the same |
EP23218078.6A EP4472379A3 (en) | 2017-08-21 | 2018-03-01 | Three-dimensional memory devices and methods for forming the same |
TW107108765A TWI722275B (en) | 2017-08-21 | 2018-03-15 | Three-dimensional memory devices and methods for forming the same |
TW110114393A TW202129923A (en) | 2017-08-21 | 2018-03-15 | Three-dimensional memory devices and methods for forming the same |
US16/047,251 US11211397B2 (en) | 2017-08-21 | 2018-07-27 | Three-dimensional memory devices and methods for forming the same |
US17/102,625 US11805646B2 (en) | 2017-08-21 | 2020-11-24 | Three-dimensional memory devices and methods for forming the same |
JP2022141341A JP2022172300A (en) | 2017-08-21 | 2022-09-06 | NAND memory device and method for forming NAND memory device |
US18/244,688 US20230422504A1 (en) | 2017-08-21 | 2023-09-11 | Three-dimensional memory devices and methods for forming the same |
JP2024155487A JP2024161288A (en) | 2017-08-21 | 2024-09-10 | Memory Devices |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710716657.1A CN107658315B (en) | 2017-08-21 | 2017-08-21 | Semiconductor device and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107658315A true CN107658315A (en) | 2018-02-02 |
CN107658315B CN107658315B (en) | 2019-05-14 |
Family
ID=61127719
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710716657.1A Active CN107658315B (en) | 2017-08-21 | 2017-08-21 | Semiconductor device and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107658315B (en) |
Cited By (66)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107658317A (en) * | 2017-09-15 | 2018-02-02 | 长江存储科技有限责任公司 | A kind of semiconductor device and preparation method thereof |
CN108598084A (en) * | 2018-04-27 | 2018-09-28 | 长江存储科技有限责任公司 | Semiconductor devices and its manufacturing method |
CN109119426A (en) * | 2018-09-28 | 2019-01-01 | 长江存储科技有限责任公司 | 3D memory device |
CN109256392A (en) * | 2018-11-20 | 2019-01-22 | 长江存储科技有限责任公司 | Three-dimensional storage and forming method thereof |
CN109314114A (en) * | 2018-06-28 | 2019-02-05 | 长江存储科技有限责任公司 | Ladder structure for double-sided wiring in three-dimensional memory devices |
CN109346478A (en) * | 2018-09-28 | 2019-02-15 | 长江存储科技有限责任公司 | Manufacturing method of 3D memory device |
WO2019037403A1 (en) * | 2017-08-21 | 2019-02-28 | Yangtze Memory Technologies Co., Ltd. | Three-dimensional memory devices and methods for forming the same |
CN109417077A (en) * | 2018-09-10 | 2019-03-01 | 长江存储科技有限责任公司 | The memory device of metal wire loading is reduced using pectination routing infrastructure |
CN109417073A (en) * | 2018-09-10 | 2019-03-01 | 长江存储科技有限责任公司 | Memory Devices Using Comb Routing to Reduce Wire Loading |
CN109449161A (en) * | 2018-09-28 | 2019-03-08 | 长江存储科技有限责任公司 | The manufacturing method of 3D memory device |
CN109564923A (en) * | 2018-06-28 | 2019-04-02 | 长江存储科技有限责任公司 | Three-dimensional memory device having a shield layer and method for manufacturing the same |
CN109712986A (en) * | 2018-11-27 | 2019-05-03 | 长江存储科技有限责任公司 | 3D memory device and its manufacturing method |
CN109727989A (en) * | 2018-12-29 | 2019-05-07 | 长江存储科技有限责任公司 | A three-dimensional memory and its manufacturing method |
CN109844931A (en) * | 2019-01-02 | 2019-06-04 | 长江存储科技有限责任公司 | With the three-dimensional storage equipment and forming method thereof through ladder contact |
CN110062958A (en) * | 2019-03-04 | 2019-07-26 | 长江存储科技有限责任公司 | The method for being used to form three-dimensional storage part |
CN110211928A (en) * | 2019-05-17 | 2019-09-06 | 上海新储集成电路有限公司 | A kind of preparation method of three-dimensional memory structure |
CN110246821A (en) * | 2018-03-07 | 2019-09-17 | 东芝存储器株式会社 | semiconductor device |
CN110249427A (en) * | 2019-04-30 | 2019-09-17 | 长江存储科技有限责任公司 | Three-dimensional storage part with embedded type dynamic random access memory |
CN110291631A (en) * | 2019-05-17 | 2019-09-27 | 长江存储科技有限责任公司 | Three-dimensional memory device with static random access memory |
CN110299361A (en) * | 2019-05-17 | 2019-10-01 | 上海新储集成电路有限公司 | A kind of three-dimensional memory structure |
CN110310957A (en) * | 2018-03-20 | 2019-10-08 | 东芝存储器株式会社 | Semiconductor memory device and method of manufacturing semiconductor memory device |
US10453860B1 (en) | 2018-06-28 | 2019-10-22 | Yangtze Memory Technologies Co., Ltd. | Method of forming staircase structures for three-dimensional memory device double-sided routing |
CN110537259A (en) * | 2019-06-28 | 2019-12-03 | 长江存储科技有限责任公司 | It is calculated in memory in three-dimensional storage part |
CN110637368A (en) * | 2019-08-23 | 2019-12-31 | 长江存储科技有限责任公司 | Nonvolatile memory device and method of manufacturing the same |
CN110720145A (en) * | 2019-04-30 | 2020-01-21 | 长江存储科技有限责任公司 | Three-dimensional storage device with three-dimensional phase change memory |
CN110720143A (en) * | 2019-04-30 | 2020-01-21 | 长江存储科技有限责任公司 | Bonded semiconductor device with processor and NAND flash memory and method of forming the same |
WO2020014981A1 (en) * | 2018-07-20 | 2020-01-23 | Yangtze Memory Technologies Co., Ltd. | Three-dimensional memory devices |
WO2020014976A1 (en) * | 2018-07-20 | 2020-01-23 | Yangtze Memory Technologies Co., Ltd. | Methods for forming three-dimensional memory devices |
WO2020073185A1 (en) * | 2018-10-09 | 2020-04-16 | Yangtze Memory Technologies Co., Ltd. | Methods for reducing defects in semiconductor plug in three-dimensional memory device |
CN111033728A (en) * | 2019-04-15 | 2020-04-17 | 长江存储科技有限责任公司 | Bonded semiconductor device with programmable logic device and dynamic random access memory and method of forming the same |
JP2020102613A (en) * | 2018-12-21 | 2020-07-02 | 三星電子株式会社Samsung Electronics Co.,Ltd. | Semiconductor device |
WO2020133784A1 (en) * | 2018-12-29 | 2020-07-02 | 中芯集成电路(宁波)有限公司 | Microcontroller and manufacture method therefor |
CN111370416A (en) * | 2020-03-23 | 2020-07-03 | 长江存储科技有限责任公司 | Three-dimensional memory and method of making three-dimensional memory |
CN111403413A (en) * | 2018-10-23 | 2020-07-10 | 长江存储科技有限责任公司 | Three-dimensional memory device with semiconductor plug formed using backside substrate thinning |
CN111415941A (en) * | 2018-09-20 | 2020-07-14 | 长江存储科技有限责任公司 | Multi-stacked-layer three-dimensional memory device |
KR20200094529A (en) * | 2019-01-30 | 2020-08-07 | 에스케이하이닉스 주식회사 | Semiconductor memory device and method of manufacturing the same |
CN111771282A (en) * | 2020-05-22 | 2020-10-13 | 长江存储科技有限责任公司 | Memory device and method of forming the same |
CN111883538A (en) * | 2019-05-02 | 2020-11-03 | 爱思开海力士有限公司 | Method for manufacturing semiconductor memory device |
WO2021016804A1 (en) * | 2019-07-29 | 2021-02-04 | 中国科学院微电子研究所 | Three-dimensional memory and manufacturing method therefor |
CN112510031A (en) * | 2019-04-30 | 2021-03-16 | 长江存储科技有限责任公司 | Bonded semiconductor device with processor and NAND flash memory and method of forming the same |
CN112614831A (en) * | 2019-04-15 | 2021-04-06 | 长江存储科技有限责任公司 | Integrated semiconductor device with processor and heterogeneous memory and forming method thereof |
US11031333B2 (en) | 2017-09-15 | 2021-06-08 | Yangtze Memory Technologies Co., Ltd. | Three-dimensional memory devices having a plurality of NAND strings |
CN113097244A (en) * | 2021-03-11 | 2021-07-09 | 长江先进存储产业创新中心有限责任公司 | Semiconductor device and forming method thereof |
US11081524B2 (en) | 2019-03-04 | 2021-08-03 | Yangtze Memory Technologies Co., Ltd. | Three-dimensional memory devices |
CN113394210A (en) * | 2020-03-12 | 2021-09-14 | 铠侠股份有限公司 | Semiconductor memory device with a plurality of memory cells |
CN113437060A (en) * | 2021-06-28 | 2021-09-24 | 长江存储科技有限责任公司 | three-dimensional memory |
KR20210125070A (en) * | 2019-06-27 | 2021-10-15 | 양쯔 메모리 테크놀로지스 씨오., 엘티디. | Novel 3D NAND memory device and method of forming the same |
US11158604B2 (en) | 2019-04-15 | 2021-10-26 | Yangtze Memory Technologies Co., Ltd. | Unified semiconductor devices having processor and heterogeneous memories and methods for forming the same |
WO2021237880A1 (en) * | 2020-05-27 | 2021-12-02 | Yangtze Memory Technologies Co., Ltd. | Three-dimensional memory devices |
CN113906563A (en) * | 2021-09-02 | 2022-01-07 | 长江存储科技有限责任公司 | Three-dimensional integrated structure and method of forming the same |
JP2022513855A (en) * | 2018-12-18 | 2022-02-09 | 長江存儲科技有限責任公司 | Three-dimensional memory devices with transcribed interconnect layers and methods for forming them |
CN114361170A (en) * | 2021-12-28 | 2022-04-15 | 长江存储科技有限责任公司 | Semiconductor structure, preparation method thereof and three-dimensional memory |
US11315914B2 (en) | 2020-01-06 | 2022-04-26 | SK Hynix Inc. | Three-dimensional semiconductor memory device |
CN111801800B (en) * | 2020-05-27 | 2022-06-07 | 长江存储科技有限责任公司 | three-dimensional memory device |
JP2022528547A (en) * | 2019-05-17 | 2022-06-14 | 長江存儲科技有限責任公司 | Data buffering behavior of 3D memory devices with static random access memory |
JP2022528592A (en) * | 2019-04-15 | 2022-06-15 | 長江存儲科技有限責任公司 | A bonded semiconductor device with a processor and dynamic random access memory and how to form it |
US11387216B2 (en) | 2020-02-05 | 2022-07-12 | SK Hynix Inc. | Semiconductor memory device |
US11462560B2 (en) | 2020-05-27 | 2022-10-04 | Yangtze Memory Technologies Co., Ltd. | Methods for forming three-dimensional memory devices |
US11461266B2 (en) | 2019-06-28 | 2022-10-04 | Yangtze Memory Technologies Co., Ltd. | Computation-in-memory in three-dimensional memory device |
US11469242B2 (en) | 2019-08-02 | 2022-10-11 | SK Hynix Inc. | Semiconductor memory device and manufacturing method of the semiconductor memory device |
US11474739B2 (en) | 2019-05-17 | 2022-10-18 | Yangtze Memory Technologies Co., Ltd. | Cache program operation of three-dimensional memory device with static random-access memory |
US11557570B2 (en) | 2020-05-27 | 2023-01-17 | Yangtze Memory Technologies Co., Ltd. | Methods for forming three-dimensional memory devices |
US11574883B2 (en) | 2020-10-22 | 2023-02-07 | Samsung Electronics Co., Ltd. | Semiconductor memory device, electronic system including the same, and method for fabricating the same |
US11574922B2 (en) | 2020-05-27 | 2023-02-07 | Yangtze Memory Technologies Co., Ltd. | Three-dimensional memory devices |
US11711913B2 (en) | 2019-04-30 | 2023-07-25 | Yangtze Memory Technologies Co., Ltd. | Bonded semiconductor devices having programmable logic device and NAND flash memory and methods for forming the same |
US12431468B2 (en) | 2019-04-15 | 2025-09-30 | Yangtze Memory Technologies Co., Ltd. | Bonded semiconductor devices having processor and dynamic random-access memory and methods for forming the same |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103681687A (en) * | 2012-09-11 | 2014-03-26 | 三星电子株式会社 | Three-dimensional semiconductor memory device and manufacturing method thereof |
US20160079164A1 (en) * | 2014-09-12 | 2016-03-17 | Kabushiki Kaisha Toshiba | Semiconductor memory device and method for manufacturing same |
US20160204117A1 (en) * | 2013-03-12 | 2016-07-14 | Sandisk Technologies Inc. | Vertical nand and method of making thereof using sequential stack etching and self-aligned landing pad |
-
2017
- 2017-08-21 CN CN201710716657.1A patent/CN107658315B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103681687A (en) * | 2012-09-11 | 2014-03-26 | 三星电子株式会社 | Three-dimensional semiconductor memory device and manufacturing method thereof |
US20160204117A1 (en) * | 2013-03-12 | 2016-07-14 | Sandisk Technologies Inc. | Vertical nand and method of making thereof using sequential stack etching and self-aligned landing pad |
US20160079164A1 (en) * | 2014-09-12 | 2016-03-17 | Kabushiki Kaisha Toshiba | Semiconductor memory device and method for manufacturing same |
Cited By (171)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11805646B2 (en) | 2017-08-21 | 2023-10-31 | Yangtze Memory Technologies Co., Ltd. | Three-dimensional memory devices and methods for forming the same |
US11211397B2 (en) | 2017-08-21 | 2021-12-28 | Yangtze Memory Technologies Co., Ltd. | Three-dimensional memory devices and methods for forming the same |
WO2019037403A1 (en) * | 2017-08-21 | 2019-02-28 | Yangtze Memory Technologies Co., Ltd. | Three-dimensional memory devices and methods for forming the same |
CN107658317A (en) * | 2017-09-15 | 2018-02-02 | 长江存储科技有限责任公司 | A kind of semiconductor device and preparation method thereof |
US11031333B2 (en) | 2017-09-15 | 2021-06-08 | Yangtze Memory Technologies Co., Ltd. | Three-dimensional memory devices having a plurality of NAND strings |
US11699657B2 (en) | 2017-09-15 | 2023-07-11 | Yangtze Memory Technologies Co., Ltd. | Three-dimensional memory devices having a plurality of NAND strings located between a substrate and a single crystalline silicon layer |
CN107658317B (en) * | 2017-09-15 | 2019-01-01 | 长江存储科技有限责任公司 | A kind of semiconductor device and preparation method thereof |
US11462474B2 (en) | 2017-09-15 | 2022-10-04 | Yangtze Memory Technologies Co., Ltd. | Three-dimensional memory devices having a plurality of NAND strings |
US12218088B2 (en) | 2018-03-07 | 2025-02-04 | Kioxia Corporation | Semiconductor device |
CN110246821A (en) * | 2018-03-07 | 2019-09-17 | 东芝存储器株式会社 | semiconductor device |
CN110246821B (en) * | 2018-03-07 | 2024-03-19 | 铠侠股份有限公司 | Semiconductor device with a semiconductor device having a plurality of semiconductor chips |
CN110310957A (en) * | 2018-03-20 | 2019-10-08 | 东芝存储器株式会社 | Semiconductor memory device and method of manufacturing semiconductor memory device |
CN108598084A (en) * | 2018-04-27 | 2018-09-28 | 长江存储科技有限责任公司 | Semiconductor devices and its manufacturing method |
CN108598084B (en) * | 2018-04-27 | 2019-08-30 | 长江存储科技有限责任公司 | Semiconductor device and manufacturing method thereof |
CN109314114B (en) * | 2018-06-28 | 2019-11-22 | 长江存储科技有限责任公司 | Ladder structure for double-sided wiring of three-dimensional memory devices |
KR102309462B1 (en) * | 2018-06-28 | 2021-10-06 | 양쯔 메모리 테크놀로지스 씨오., 엘티디. | A three-dimensional memory device having a shielding layer and a method for forming a three-dimensional memory device |
US11758729B2 (en) | 2018-06-28 | 2023-09-12 | Yangtze Memory Technologies Co., Ltd. | Three-dimensional memory device having a shielding layer and method for forming the same |
US10847534B2 (en) | 2018-06-28 | 2020-11-24 | Yangtze Memory Technologies Co., Ltd. | Staircase structures for three-dimensional memory device double-sided routing |
CN109564923A (en) * | 2018-06-28 | 2019-04-02 | 长江存储科技有限责任公司 | Three-dimensional memory device having a shield layer and method for manufacturing the same |
CN111430356A (en) * | 2018-06-28 | 2020-07-17 | 长江存储科技有限责任公司 | Three-dimensional memory device having a shield layer and method for manufacturing the same |
US11758731B2 (en) | 2018-06-28 | 2023-09-12 | Yangtze Memory Technologies Co., Ltd. | Three-dimensional memory device having a shielding layer and method for forming the same |
US11043506B2 (en) | 2018-06-28 | 2021-06-22 | Yangtze Memory Technologies Co., Ltd. | Three-dimensional memory device having a shielding layer and method for forming the same |
CN109314114A (en) * | 2018-06-28 | 2019-02-05 | 长江存储科技有限责任公司 | Ladder structure for double-sided wiring in three-dimensional memory devices |
WO2020000318A1 (en) * | 2018-06-28 | 2020-01-02 | Yangtze Memory Technologies Co., Ltd. | Three-dimensional memory device having shielding layer and method for forming the same |
US10453860B1 (en) | 2018-06-28 | 2019-10-22 | Yangtze Memory Technologies Co., Ltd. | Method of forming staircase structures for three-dimensional memory device double-sided routing |
KR20200127260A (en) * | 2018-06-28 | 2020-11-10 | 양쯔 메모리 테크놀로지스 씨오., 엘티디. | 3D memory device with shielding layer and method for forming 3D memory device |
KR20210030969A (en) * | 2018-07-20 | 2021-03-18 | 양쯔 메모리 테크놀로지스 씨오., 엘티디. | 3d memory device |
WO2020014981A1 (en) * | 2018-07-20 | 2020-01-23 | Yangtze Memory Technologies Co., Ltd. | Three-dimensional memory devices |
KR102651818B1 (en) * | 2018-07-20 | 2024-03-26 | 양쯔 메모리 테크놀로지스 씨오., 엘티디. | 3D memory device |
US10867678B2 (en) | 2018-07-20 | 2020-12-15 | Yangtze Memory Technologies Co., Ltd. | Three-dimensional memory devices |
US10580788B2 (en) | 2018-07-20 | 2020-03-03 | Yangtze Memory Technologies, Co., Ltd. | Methods for forming three-dimensional memory devices |
WO2020014976A1 (en) * | 2018-07-20 | 2020-01-23 | Yangtze Memory Technologies Co., Ltd. | Methods for forming three-dimensional memory devices |
US10878911B2 (en) | 2018-09-10 | 2020-12-29 | Yangtze Memory Technologies Co., Ltd. | Memory device using comb-like routing structure for reduced metal line loading |
TWI694594B (en) * | 2018-09-10 | 2020-05-21 | 大陸商長江存儲科技有限責任公司 | Use a comb-shaped winding structure to reduce the memory elements loaded on the metal wire |
TWI685953B (en) * | 2018-09-10 | 2020-02-21 | 大陸商長江存儲科技有限責任公司 | Memory device using comb-like routing structure for reduced metal line loading |
US10762965B2 (en) | 2018-09-10 | 2020-09-01 | Yangtze Memory Technologies Co, Ltd. | Memory device using comb-like routing structure for reduced metal line loading |
CN109417073A (en) * | 2018-09-10 | 2019-03-01 | 长江存储科技有限责任公司 | Memory Devices Using Comb Routing to Reduce Wire Loading |
US11443807B2 (en) | 2018-09-10 | 2022-09-13 | Yangtze Memory Technologies Co., Ltd. | Memory device using comb-like routing structure for reduced metal line loading |
US10510415B1 (en) | 2018-09-10 | 2019-12-17 | Yangtze Memory Technologies Co., Ltd. | Memory device using comb-like routing structure for reduced metal line loading |
US11164633B2 (en) | 2018-09-10 | 2021-11-02 | Yangtze Memory Technologies Co., Ltd. | Memory device using comb-like routing structure for reduced metal line loading |
CN109417077A (en) * | 2018-09-10 | 2019-03-01 | 长江存储科技有限责任公司 | The memory device of metal wire loading is reduced using pectination routing infrastructure |
CN109417077B (en) * | 2018-09-10 | 2019-10-18 | 长江存储科技有限责任公司 | Memory Devices Using Comb Routing to Reduce Wire Loading |
US11024384B2 (en) | 2018-09-10 | 2021-06-01 | Yangtze Memory Technologies Co., Ltd. | Memory device using comb-like routing structure for reduced metal line loading |
CN111211133B (en) * | 2018-09-10 | 2021-03-30 | 长江存储科技有限责任公司 | Memory Devices Using Comb Routing to Reduce Wire Loading |
CN111211133A (en) * | 2018-09-10 | 2020-05-29 | 长江存储科技有限责任公司 | Memory device using comb routing structure to reduce metal line loading |
CN111415941A (en) * | 2018-09-20 | 2020-07-14 | 长江存储科技有限责任公司 | Multi-stacked-layer three-dimensional memory device |
US11145645B2 (en) | 2018-09-20 | 2021-10-12 | Yangtze Memory Technologies Co., Ltd. | Multi-stack three-dimensional memory devices |
CN109449161A (en) * | 2018-09-28 | 2019-03-08 | 长江存储科技有限责任公司 | The manufacturing method of 3D memory device |
CN109346478A (en) * | 2018-09-28 | 2019-02-15 | 长江存储科技有限责任公司 | Manufacturing method of 3D memory device |
CN109119426A (en) * | 2018-09-28 | 2019-01-01 | 长江存储科技有限责任公司 | 3D memory device |
CN109119426B (en) * | 2018-09-28 | 2024-04-16 | 长江存储科技有限责任公司 | 3D memory device |
CN109346478B (en) * | 2018-09-28 | 2020-11-13 | 长江存储科技有限责任公司 | Method for manufacturing 3D memory device |
WO2020073185A1 (en) * | 2018-10-09 | 2020-04-16 | Yangtze Memory Technologies Co., Ltd. | Methods for reducing defects in semiconductor plug in three-dimensional memory device |
US10784279B2 (en) | 2018-10-09 | 2020-09-22 | Yangtze Memory Technologies Co., Ltd. | Methods for reducing defects in semiconductor plug in three-dimensional memory device |
US11205662B2 (en) | 2018-10-09 | 2021-12-21 | Yangtze Memory Technologies Co., Ltd. | Methods for reducing defects in semiconductor plug in three-dimensional memory device |
KR20210028249A (en) * | 2018-10-23 | 2021-03-11 | 양쯔 메모리 테크놀로지스 씨오., 엘티디. | 3D memory device with semiconductor plug formed using thinner rear substrate |
KR102573353B1 (en) * | 2018-10-23 | 2023-08-30 | 양쯔 메모리 테크놀로지스 씨오., 엘티디. | Three-dimensional memory device having a semiconductor plug formed using rear substrate thinning |
EP3830872A4 (en) * | 2018-10-23 | 2022-03-16 | Yangtze Memory Technologies Co., Ltd. | THREE DIMENSIONAL STORAGE DEVICE WITH A SEMICONDUCTOR PLUG MOLDED BY BACK SUBSTRATE THINNING |
CN111403413A (en) * | 2018-10-23 | 2020-07-10 | 长江存储科技有限责任公司 | Three-dimensional memory device with semiconductor plug formed using backside substrate thinning |
CN109256392B (en) * | 2018-11-20 | 2020-07-14 | 长江存储科技有限责任公司 | Three-dimensional memory and method of forming the same |
CN109256392A (en) * | 2018-11-20 | 2019-01-22 | 长江存储科技有限责任公司 | Three-dimensional storage and forming method thereof |
CN109712986B (en) * | 2018-11-27 | 2021-06-01 | 长江存储科技有限责任公司 | 3D memory device and method of manufacturing the same |
CN109712986A (en) * | 2018-11-27 | 2019-05-03 | 长江存储科技有限责任公司 | 3D memory device and its manufacturing method |
JP2022513855A (en) * | 2018-12-18 | 2022-02-09 | 長江存儲科技有限責任公司 | Three-dimensional memory devices with transcribed interconnect layers and methods for forming them |
JP2022516240A (en) * | 2018-12-18 | 2022-02-25 | 長江存儲科技有限責任公司 | Multi-deck 3D memory devices and methods for forming them |
JP7292393B2 (en) | 2018-12-18 | 2023-06-16 | 長江存儲科技有限責任公司 | Three-dimensional memory devices with transferred interconnect layers and methods for forming them |
JP7250139B2 (en) | 2018-12-18 | 2023-03-31 | 長江存儲科技有限責任公司 | Multi-deck three-dimensional memory devices and methods for forming them |
JP2020102613A (en) * | 2018-12-21 | 2020-07-02 | 三星電子株式会社Samsung Electronics Co.,Ltd. | Semiconductor device |
JP7513385B2 (en) | 2018-12-21 | 2024-07-09 | 三星電子株式会社 | Semiconductor Device |
CN109727989A (en) * | 2018-12-29 | 2019-05-07 | 长江存储科技有限责任公司 | A three-dimensional memory and its manufacturing method |
CN109727989B (en) * | 2018-12-29 | 2020-07-07 | 长江存储科技有限责任公司 | A three-dimensional memory and its manufacturing method |
WO2020133784A1 (en) * | 2018-12-29 | 2020-07-02 | 中芯集成电路(宁波)有限公司 | Microcontroller and manufacture method therefor |
US10847539B2 (en) | 2019-01-02 | 2020-11-24 | Yangtze Memory Technologies Co., Ltd. | Three-dimensional memory devices having through stair contacts and methods for forming the same |
CN109844931A (en) * | 2019-01-02 | 2019-06-04 | 长江存储科技有限责任公司 | With the three-dimensional storage equipment and forming method thereof through ladder contact |
US11716846B2 (en) | 2019-01-02 | 2023-08-01 | Yangtze Memory Technologies Co., Ltd. | Three-dimensional memory devices having through stair contacts and methods for forming the same |
US12035530B2 (en) | 2019-01-02 | 2024-07-09 | Yangtze Memory Technologies Co., Ltd. | Three-dimensional memory devices having through stair contacts and methods for forming the same |
US11177249B2 (en) | 2019-01-30 | 2021-11-16 | SK Hynix Inc. | Semiconductor memory device and method of manufacturing the same |
KR102730308B1 (en) * | 2019-01-30 | 2024-11-15 | 에스케이하이닉스 주식회사 | Semiconductor memory device and method of manufacturing the same |
KR20200094529A (en) * | 2019-01-30 | 2020-08-07 | 에스케이하이닉스 주식회사 | Semiconductor memory device and method of manufacturing the same |
CN110062958A (en) * | 2019-03-04 | 2019-07-26 | 长江存储科技有限责任公司 | The method for being used to form three-dimensional storage part |
CN110062958B (en) * | 2019-03-04 | 2020-05-26 | 长江存储科技有限责任公司 | Method for forming three-dimensional memory device |
TWI707459B (en) * | 2019-03-04 | 2020-10-11 | 大陸商長江存儲科技有限責任公司 | Method for forming a 3-dimensional memory device |
US11081524B2 (en) | 2019-03-04 | 2021-08-03 | Yangtze Memory Technologies Co., Ltd. | Three-dimensional memory devices |
US10797076B2 (en) | 2019-03-04 | 2020-10-06 | Yangtze Memory Technologies Co., Ltd. | Methods for forming three-dimensional memory devices |
CN111033728A (en) * | 2019-04-15 | 2020-04-17 | 长江存储科技有限责任公司 | Bonded semiconductor device with programmable logic device and dynamic random access memory and method of forming the same |
CN112614831A (en) * | 2019-04-15 | 2021-04-06 | 长江存储科技有限责任公司 | Integrated semiconductor device with processor and heterogeneous memory and forming method thereof |
JP2023156435A (en) * | 2019-04-15 | 2023-10-24 | 長江存儲科技有限責任公司 | Semiconductor device and method |
US11749641B2 (en) | 2019-04-15 | 2023-09-05 | Yangtze Memory Technologies Co., Ltd. | Unified semiconductor devices having processor and heterogeneous memories and methods for forming the same |
CN112614831B (en) * | 2019-04-15 | 2023-08-08 | 长江存储科技有限责任公司 | Integrated semiconductor device with processor and heterogeneous memory and method of forming the same |
US11721668B2 (en) | 2019-04-15 | 2023-08-08 | Yangtze Memory Technologies Co., Ltd. | Bonded semiconductor devices having programmable logic device and dynamic random-access memory and methods for forming the same |
US11158604B2 (en) | 2019-04-15 | 2021-10-26 | Yangtze Memory Technologies Co., Ltd. | Unified semiconductor devices having processor and heterogeneous memories and methods for forming the same |
US11694993B2 (en) | 2019-04-15 | 2023-07-04 | Yangtze Memory Technologies Co., Ltd. | Unified semiconductor devices having processor and heterogeneous memories and methods for forming the same |
US11562985B2 (en) | 2019-04-15 | 2023-01-24 | Yangtze Memory Technologies Co., Ltd. | Bonded semiconductor devices having processor and dynamic random-access memory and methods for forming the same |
JP7487213B2 (en) | 2019-04-15 | 2024-05-20 | 長江存儲科技有限責任公司 | Junction semiconductor device having a processor and dynamic random access memory and method of forming same |
US11996389B2 (en) | 2019-04-15 | 2024-05-28 | Yangtze Memory Technologies Co., Ltd. | Bonded semiconductor devices having programmable logic device and dynamic random-access memory and methods for forming the same |
US11430766B2 (en) | 2019-04-15 | 2022-08-30 | Yangtze Memory Technologies Co., Ltd. | Bonded semiconductor devices having processor and dynamic random-access memory and methods for forming the same |
JP2022528592A (en) * | 2019-04-15 | 2022-06-15 | 長江存儲科技有限責任公司 | A bonded semiconductor device with a processor and dynamic random access memory and how to form it |
US12002788B2 (en) | 2019-04-15 | 2024-06-04 | Yangtze Memory Technologies Co., Ltd. | Bonded semiconductor devices having processor and dynamic random-access memory and methods for forming the same |
US12431468B2 (en) | 2019-04-15 | 2025-09-30 | Yangtze Memory Technologies Co., Ltd. | Bonded semiconductor devices having processor and dynamic random-access memory and methods for forming the same |
CN113488505B (en) * | 2019-04-30 | 2022-09-30 | 长江存储科技有限责任公司 | Three-dimensional memory device with three-dimensional phase change memory |
US11552056B2 (en) | 2019-04-30 | 2023-01-10 | Yangtze Memory Technologies Co., Ltd. | Three-dimensional memory device with three-dimensional phase-change memory |
US11302700B2 (en) | 2019-04-30 | 2022-04-12 | Yangtze Memory Technologies Co., Ltd. | Bonded semiconductor devices having programmable logic device and NAND flash memory and methods for forming the same |
US10984862B2 (en) | 2019-04-30 | 2021-04-20 | Yangtze Memory Technologies Co., Ltd. | Three-dimensional memory device with embedded dynamic random-access memory |
CN112510031A (en) * | 2019-04-30 | 2021-03-16 | 长江存储科技有限责任公司 | Bonded semiconductor device with processor and NAND flash memory and method of forming the same |
US11711913B2 (en) | 2019-04-30 | 2023-07-25 | Yangtze Memory Technologies Co., Ltd. | Bonded semiconductor devices having programmable logic device and NAND flash memory and methods for forming the same |
CN110720143A (en) * | 2019-04-30 | 2020-01-21 | 长江存储科技有限责任公司 | Bonded semiconductor device with processor and NAND flash memory and method of forming the same |
CN110249427A (en) * | 2019-04-30 | 2019-09-17 | 长江存储科技有限责任公司 | Three-dimensional storage part with embedded type dynamic random access memory |
US11551753B2 (en) | 2019-04-30 | 2023-01-10 | Yangtze Memory Technologies Co., Ltd. | Three-dimensional memory device with embedded dynamic random-access memory |
CN113488505A (en) * | 2019-04-30 | 2021-10-08 | 长江存储科技有限责任公司 | Three-dimensional memory device with three-dimensional phase change memory |
US11367729B2 (en) | 2019-04-30 | 2022-06-21 | Yangtze Memory Technologies Co., Ltd. | Bonded semiconductor devices having processor and NAND flash memory and methods for forming the same |
US10937766B2 (en) | 2019-04-30 | 2021-03-02 | Yangtze Memory Technologies Co., Ltd. | Three-dimensional memory device with three-dimensional phase-change memory |
CN112510031B (en) * | 2019-04-30 | 2024-10-25 | 长江存储科技有限责任公司 | Bonded semiconductor device having processor and NAND flash memory and method of forming the same |
US11864367B2 (en) | 2019-04-30 | 2024-01-02 | Yangtze Memory Technologies Co., Ltd. | Bonded semiconductor devices having processor and NAND flash memory and methods for forming the same |
CN110720145A (en) * | 2019-04-30 | 2020-01-21 | 长江存储科技有限责任公司 | Three-dimensional storage device with three-dimensional phase change memory |
CN110720143B (en) * | 2019-04-30 | 2021-01-29 | 长江存储科技有限责任公司 | Bonded semiconductor device with processor and NAND flash memory and method of forming the same |
US11133293B2 (en) | 2019-04-30 | 2021-09-28 | Yangtze Memory Technologies Co., Ltd. | Three-dimensional memory device with three-dimensional phase-change memory |
US20220230966A1 (en) | 2019-05-02 | 2022-07-21 | SK Hynix Inc. | Manufacturing method of a semiconductor memory device |
US11309256B2 (en) | 2019-05-02 | 2022-04-19 | SK Hynix Inc. | Manufacturing method of a semiconductor memory device |
US11996370B2 (en) | 2019-05-02 | 2024-05-28 | SK Hynix Inc. | Manufacturing method of a semiconductor memory device |
CN111883538B (en) * | 2019-05-02 | 2023-07-07 | 爱思开海力士有限公司 | Method for manufacturing semiconductor memory device |
US11705402B2 (en) | 2019-05-02 | 2023-07-18 | SK Hynix Inc. | Manufacturing method of a semiconductor memory device |
CN111883538A (en) * | 2019-05-02 | 2020-11-03 | 爱思开海力士有限公司 | Method for manufacturing semiconductor memory device |
US11735243B2 (en) | 2019-05-17 | 2023-08-22 | Yangtze Memory Technologies Co., Ltd. | Three-dimensional memory device with static random-access memory |
US11474739B2 (en) | 2019-05-17 | 2022-10-18 | Yangtze Memory Technologies Co., Ltd. | Cache program operation of three-dimensional memory device with static random-access memory |
US11200935B2 (en) | 2019-05-17 | 2021-12-14 | Yangtze Memory Technologies Co., Ltd. | Three-dimensional memory device with static random-access memory |
JP2022528547A (en) * | 2019-05-17 | 2022-06-14 | 長江存儲科技有限責任公司 | Data buffering behavior of 3D memory devices with static random access memory |
EP3909075A4 (en) * | 2019-05-17 | 2022-09-07 | Yangtze Memory Technologies Co., Ltd. | THREE-DIMENSIONAL STORAGE DEVICE WITH STATIC RANDOM ACCESS MEMORY |
CN110211928A (en) * | 2019-05-17 | 2019-09-06 | 上海新储集成电路有限公司 | A kind of preparation method of three-dimensional memory structure |
US12019919B2 (en) | 2019-05-17 | 2024-06-25 | Yangtze Memory Technologies Co., Ltd. | Cache program operation of three-dimensional memory device with static random-access memory |
US10811071B1 (en) | 2019-05-17 | 2020-10-20 | Yangtze Memory Technologies Co., Ltd. | Three-dimensional memory device with static random-access memory |
CN110291631A (en) * | 2019-05-17 | 2019-09-27 | 长江存储科技有限责任公司 | Three-dimensional memory device with static random access memory |
CN110299361A (en) * | 2019-05-17 | 2019-10-01 | 上海新储集成电路有限公司 | A kind of three-dimensional memory structure |
KR102644013B1 (en) * | 2019-06-27 | 2024-03-05 | 양쯔 메모리 테크놀로지스 씨오., 엘티디. | New 3D NAND memory device and method of forming the same |
KR20210125070A (en) * | 2019-06-27 | 2021-10-15 | 양쯔 메모리 테크놀로지스 씨오., 엘티디. | Novel 3D NAND memory device and method of forming the same |
US11114434B2 (en) | 2019-06-28 | 2021-09-07 | Yangtze Memory Technologies Co., Ltd. | Computation-in-memory in three-dimensional memory device |
WO2020258209A1 (en) * | 2019-06-28 | 2020-12-30 | Yangtze Memory Technologies Co., Ltd. | Computation-in-memory in three-dimensional memory device |
US11594531B2 (en) | 2019-06-28 | 2023-02-28 | Yangtze Memory Technologies Co., Ltd. | Computation-in-memory in three-dimensional memory device |
CN110537259A (en) * | 2019-06-28 | 2019-12-03 | 长江存储科技有限责任公司 | It is calculated in memory in three-dimensional storage part |
US11430785B2 (en) | 2019-06-28 | 2022-08-30 | Yangtze Memory Technologies Co., Ltd. | Computation-in-memory in three-dimensional memory device |
US11461266B2 (en) | 2019-06-28 | 2022-10-04 | Yangtze Memory Technologies Co., Ltd. | Computation-in-memory in three-dimensional memory device |
US12389595B2 (en) | 2019-07-29 | 2025-08-12 | Institute of Microelectronics, Chinese Academy of Sciences | Three-dimensional memory comprising storage unit and logic control unit and method for manufacturing the same |
WO2021016804A1 (en) * | 2019-07-29 | 2021-02-04 | 中国科学院微电子研究所 | Three-dimensional memory and manufacturing method therefor |
US11469242B2 (en) | 2019-08-02 | 2022-10-11 | SK Hynix Inc. | Semiconductor memory device and manufacturing method of the semiconductor memory device |
US12213319B2 (en) | 2019-08-02 | 2025-01-28 | SK Hynix Inc. | Semiconductor memory device and manufacturing method of the semiconductor memory device |
CN110637368B (en) * | 2019-08-23 | 2021-03-23 | 长江存储科技有限责任公司 | Nonvolatile memory device and method of manufacturing the same |
US11581323B2 (en) | 2019-08-23 | 2023-02-14 | Yangtze Memory Technologies Co., Ltd. | Non-volatile memory device and manufacturing method thereof |
US11849576B2 (en) | 2019-08-23 | 2023-12-19 | Yangtze Memory Technologies Co., Ltd. | Non-volatile memory device and manufacturing method thereof |
CN110637368A (en) * | 2019-08-23 | 2019-12-31 | 长江存储科技有限责任公司 | Nonvolatile memory device and method of manufacturing the same |
US11063056B2 (en) | 2019-08-23 | 2021-07-13 | Yangtze Memory Technologies Co., Ltd. | Non-volatile memory device and manufacturing method thereof |
US11315914B2 (en) | 2020-01-06 | 2022-04-26 | SK Hynix Inc. | Three-dimensional semiconductor memory device |
US11387216B2 (en) | 2020-02-05 | 2022-07-12 | SK Hynix Inc. | Semiconductor memory device |
CN113394210A (en) * | 2020-03-12 | 2021-09-14 | 铠侠股份有限公司 | Semiconductor memory device with a plurality of memory cells |
CN113394210B (en) * | 2020-03-12 | 2024-05-28 | 铠侠股份有限公司 | Semiconductor storage device |
CN111370416B (en) * | 2020-03-23 | 2022-09-23 | 长江存储科技有限责任公司 | Three-dimensional memory and method of making three-dimensional memory |
CN111370416A (en) * | 2020-03-23 | 2020-07-03 | 长江存储科技有限责任公司 | Three-dimensional memory and method of making three-dimensional memory |
CN111771282A (en) * | 2020-05-22 | 2020-10-13 | 长江存储科技有限责任公司 | Memory device and method of forming the same |
CN111771282B (en) * | 2020-05-22 | 2021-08-03 | 长江存储科技有限责任公司 | Memory device and method of forming the same |
US11488973B2 (en) | 2020-05-22 | 2022-11-01 | Yangtze Memory Technologies Co., Ltd. | Memory device having staircase structure including word line tiers and formation method thereof |
CN111801800B (en) * | 2020-05-27 | 2022-06-07 | 长江存储科技有限责任公司 | three-dimensional memory device |
US11462560B2 (en) | 2020-05-27 | 2022-10-04 | Yangtze Memory Technologies Co., Ltd. | Methods for forming three-dimensional memory devices |
US11574922B2 (en) | 2020-05-27 | 2023-02-07 | Yangtze Memory Technologies Co., Ltd. | Three-dimensional memory devices |
WO2021237880A1 (en) * | 2020-05-27 | 2021-12-02 | Yangtze Memory Technologies Co., Ltd. | Three-dimensional memory devices |
US11557570B2 (en) | 2020-05-27 | 2023-01-17 | Yangtze Memory Technologies Co., Ltd. | Methods for forming three-dimensional memory devices |
US12255181B2 (en) | 2020-05-27 | 2025-03-18 | Yangtze Memory Technologies Co., Ltd. | Methods for forming three-dimensional memory devices |
US11557601B2 (en) | 2020-05-27 | 2023-01-17 | Yangtze Memory Technologies Co., Ltd. | Three-dimensional memory devices |
US11574883B2 (en) | 2020-10-22 | 2023-02-07 | Samsung Electronics Co., Ltd. | Semiconductor memory device, electronic system including the same, and method for fabricating the same |
CN113097244A (en) * | 2021-03-11 | 2021-07-09 | 长江先进存储产业创新中心有限责任公司 | Semiconductor device and forming method thereof |
CN113437060B (en) * | 2021-06-28 | 2022-05-20 | 长江存储科技有限责任公司 | Three-dimensional memory |
CN113437060A (en) * | 2021-06-28 | 2021-09-24 | 长江存储科技有限责任公司 | three-dimensional memory |
CN113906563A (en) * | 2021-09-02 | 2022-01-07 | 长江存储科技有限责任公司 | Three-dimensional integrated structure and method of forming the same |
CN114361170A (en) * | 2021-12-28 | 2022-04-15 | 长江存储科技有限责任公司 | Semiconductor structure, preparation method thereof and three-dimensional memory |
Also Published As
Publication number | Publication date |
---|---|
CN107658315B (en) | 2019-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107658315A (en) | Semiconductor device and preparation method thereof | |
CN107658317A (en) | A kind of semiconductor device and preparation method thereof | |
CN107731828A (en) | NAND memory and preparation method thereof | |
CN107887395B (en) | NAND memory and preparation method thereof | |
JP7335309B2 (en) | Hybrid bonding contact structure for three-dimensional memory devices | |
JP7273183B2 (en) | Method for forming three-dimensional memory device | |
KR102601225B1 (en) | Integration of 3D NAND memory devices with multiple functional chips | |
TWI753488B (en) | Method for fabricating 3d memory device | |
TWI804314B (en) | Semiconductor device and three-dimensional memory device | |
CN111801800B (en) | three-dimensional memory device | |
CN110121779B (en) | Three-dimensional memory device and method for forming the same | |
TWI757626B (en) | Three-dimensional (3d) memory element and method of forming the same | |
TW202145517A (en) | Three-dimensional memory device and method for forming the same | |
CN110114867B (en) | Method of forming three-dimensional integrated wiring structure and semiconductor structure thereof | |
CN111279480B (en) | Three-dimensional memory device and method for forming the same | |
TWI752449B (en) | Three dimensional memory device and method for forming three dimensional memory device | |
CN114664840A (en) | Three-dimensional memory, preparation method thereof and memory system | |
TWI756781B (en) | Method for forming three-dimension memory device | |
TWI756745B (en) | Methods for forming three-dimensional memory devices | |
TW202203431A (en) | Three-dimension memory device | |
TW202145528A (en) | Three-dimensional memory devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |