Papers by International Journal of Computer Networks & Communications (IJCNC)

AIRCC Publishing Corporation, 2022
A distributed denial of service (DDoS) attack is one of the most common cyber threats to the Inte... more A distributed denial of service (DDoS) attack is one of the most common cyber threats to the Internet of Things (IoT). Several deep learning (DL) techniques have been utilized in intrusion detection systems to prevent DDoS attacks. However, their performance is greatly affected by a large class imbalance nature of the training datasets as well as the presence of redundant and irrelevant features in them. This study proposes RTL-DL, a new framework for an effective intrusion detection model based on the random oversampling technique and the Tomek-Links sampling technique (RTL), to minimize the effects of data imbalance in the CICIDS2017 dataset used to evaluate the proposed model. This study achieved 98.3% accuracy, 98.8% precision, 98.3% recall, 97.8% f-score, and 4.6% hamming loss. In comparison to current approaches, the suggested model has demonstrated promising results in identifying network threats in imbalanced data sets.
AIRCC Publishing Corporation, 2022
The Software-Defined Networking (SDN) paradigm does represent an effective approach aimed at enha... more The Software-Defined Networking (SDN) paradigm does represent an effective approach aimed at enhancing the performance of core networks by introducing a clean separation between the routing plane and the forwarding plane. However, the centralized architecture of SDN networks raises resiliency concerns that are addressed by a class of algorithms falling under the Controller Placement Problem (CPP) umbrella term. Such algorithms seek the optimal placement of the SDN controller. In this paper, we evaluate the main CPP algorithms and provide an experimental analysis of their performance, as well as of their capability to dynamically adapt to network malfunctions and disconnections.

AIRCC Publishing Corporation, 2022
Recently, Software-Defined Networking (SDN), a network architecture approach that enables the net... more Recently, Software-Defined Networking (SDN), a network architecture approach that enables the network to be intelligently and centrally controlled by using software applications, has been introduced. Another important issue in the network management context is Quality of Service (QoS).
This work investigates the QoS provisioning of various traffic classes on an SDN-enabled network. We propose and implement the class-based adaptive QoS control scheme on SDN-enabled network for various traffic classes, namely VoIP, Video Streaming and File Transfer. The effectiveness of our proposed scheme is validated by simulation using Mininet and Ryu controller. The procedure to create the simulation platform and all details relevant to all software used are described step-by-step in detail. The main performance evaluation metric is the Maximum Number of Traffic Flows admittable with QoS while Average Throughput, Latency, Jitter, and Packet Loss Rate are maintained at the comparable level of the existing work in the literature called JMABC [11]. Our simulation results are illustrated with 95% confidence interval. According to the simulation results, it is obvious that our proposed class-based adaptive QoS control scheme adopting the optimization technique significantly outperforms the existing similar QoS provision scheme in terms of the maximum number of the high priority traffic flows (VoIP) admittable with QoS while the other evaluation metrics are maintained at the same level.

AIRCC Publishing corporation, 2022
In network security, digital signatures are considered a basic component to developing digital au... more In network security, digital signatures are considered a basic component to developing digital authentication systems. These systems secure Internet transactions such as e-commerce, e-government, ebanking, and so on. Many digital signature schemes have been researched and published for this purpose. In this paper, we propose two new types of collective signature schemes, namely i) the collective signature for several signing groups and ii) the collective signature for several individual signings and several signing groups. And then we used two difficult problems factoring and discrete logarithm to construct these schemes. To create a combination of these two difficult problems we use the prime module p with a special structure: p = 2n +1. Schnorr's digital signature scheme is used to construct related basic schemes such as the single signature scheme, the collective signature scheme, and the group signature scheme. The proposed collective signature schemes are built from these basic schemes. The proposed signature scheme is easy to deploy on existing PKI systems. It can support PKIs in generating and providing a unique public key, a unique digital signature, and a unique digital certificate for a collective of many members. This is essential for many collective transactions on today's Internet.

AIRCC publishing Corporation, 2022
Performance analysis for devices in Internet of Things (IoT) environments is an important conside... more Performance analysis for devices in Internet of Things (IoT) environments is an important consideration, especially with their increasing integration in technological solutions, worldwide. The Single Board Computers (SBCs) of the Raspberry Pi Foundation have been widely accepted by the community, and hence, they have been incorporated in numerous IoT projects. To ease their integration, it is essential to assess their network performance. In this paper, we made an empirical performance evaluation of one of the most popular network protocols for IoT environments, named the Message Queuing Telemetry Transport (MQTT) protocol, on Raspberry Pi. To do so, we set up two different testbeds scenarios and assessed the performance with benchmarks. At the software level, we focused on Mosquitto, a popular open-source MQTT broker implementation and client library. Our principal metric is the transmission time, but we also investigated the throughput. In our experiments, we varied several parameters, such as the size of the payload of the published messages, the WiFi bandwidth, the QoS level, the security level (MQTT vs. MQTT with TLS), and the hardware for the clients and broker. We focus mainly on packet sizes ranging from 100 to 25,000 bytes. We also investigate how these low-cost devices handle a TCP SYN flood attack. In the research work presented within this paper, we aim to guide developers, researchers, network administrators, and hobbyists who plan to use these low-cost devices in an MQTT or IoT network by showing the performance that they should expect according to different Raspberry Pi options.

AIRCC Publishing Corporation, 2022
Energy-efficient relaying technology in multi-hop data transmission can help the challenges faced... more Energy-efficient relaying technology in multi-hop data transmission can help the challenges faced in cellular Vehicle-to-Everything (cellular-V2X) communication. However, due to high demand of emergency service requirements of the systems such as Public Protection and Disaster Relief (PPDR), National Security and Public Safety (NSPS), Intelligent Transport System (ITS) etc., least energy consumed user equipment (UEs)/Vehicular-UEs are required which can either run real-time applications or relay the application data. To support these scenarios, we present a high way based system model in rural area and enhance its scope for applying single-hop direct, relay assisted multi-hop cellular-V2X and Store-CarryForward (SCF) modes of uplink data transmission. We compare the performance of three modes of transmissions in terms of overall energy consumption and overall transmission delay with specific delay constraints of VoIP and video applications. With the varying cell radius and irrespective type of applications, our numerical results, validated with ns-3 show that, least energy is always consumed in SCF mode due to its inherent property but applications suffer a lot due to high delay incurred whereas singlehop direct mode shows the reverse. When compared with cellular-V2X mode, overall transmission delay for single-hop direct mode is acceptable within cell radius 600m but beyond that, relay assisted multi-hop cellular-V2X mode always outperforms (with low latency and moderate energy consumption).

AIRCC Publishing Corporation, 2021
Machine learning (ML) and Deep Learning (DL) methods are being adopted rapidly, especially in com... more Machine learning (ML) and Deep Learning (DL) methods are being adopted rapidly, especially in computer network security, such as fraud detection, network anomaly detection, intrusion detection, and much more. However, the lack of transparency of ML and DL based models is a major obstacle to their implementation and criticized due to its black-box nature, even with such tremendous results. Explainable Artificial Intelligence (XAI) is a promising area that can improve the trustworthiness of these models by giving explanations and interpreting its output. If the internal working of the ML and DL based models is understandable, then it can further help to improve its performance. The objective of this paper is to show that how XAI can be used to interpret the results of the DL model, the autoencoder in this case. And, based on the interpretation, we improved its performance for computer network anomaly detection. The kernel SHAP method, which is based on the shapley values, is used as a novel feature selection technique. This method is used to identify only those features that are actually causing the anomalous behaviour of the set of attack/anomaly instances. Later, these feature sets are used to train and validate the autoencoderbut on benign data only. Finally, the built SHAP_Model outperformed the other two models proposed based on the feature selection method. This whole experiment is conducted on the subset of the latest CICIDS2017 network dataset. The overall accuracy and AUC of SHAP_Model is 94% and 0.969, respectively.
In this article, a retrial queueing model will be considered with persevering customers for wirel... more In this article, a retrial queueing model will be considered with persevering customers for wireless cellular networks which can be frequently applied in the Fractional Guard Channel (FGC) policies, including Limited FGC (LFGC), Uniform FGC (UFGC), Limited Average FGC (LAFGC) and Quasi Uniform FGC (QUFGC). In this model, the examination on the retrial phenomena permits the analyses of important effectiveness measures pertained to the standard of services undergone by users with the probability that a fresh call first arrives the system and find all busy channels at the time, the probability that a fresh call arrives the system from the orbit and find all busy channels at the time and the probability that a handover call arrives the system and find all busy channels at the time. Comparison between four types of the FGC policy can befound to evaluate the performance of the system.

In Wireless Sensors Networks (WSN) based application, a large number of sensor devices must be de... more In Wireless Sensors Networks (WSN) based application, a large number of sensor devices must be deployed. Energy efficiency and network lifetime are the two most challenging issues in WSN. As a consequence, the main goal is to reduce the overall energy consumption using clustering protocols which have to ensure reliability and connectivity in large-scale WSN. This work presents a new clustering and routing algorithm based on the properties of the sensor networks. The main goal of this work is to extend the network lifetime via charge equilibration in the WSN. According to many errors with sensing devices and to have greater data accuracy, we use a quorum mechanism. The proposed algorithms are evaluated widely and the results are compared with related works. The experimental results show that the proposed algorithm provides an effective improvement in terms of energy consumption, data accuracy and network lifetime.

aircc publishing corporation, 2021
In this digital era, Internet of Everything (IoE) has a potential to bring out drastic changes to... more In this digital era, Internet of Everything (IoE) has a potential to bring out drastic changes to how we live today, where billions of people and devices require wireless connectivity. Where Unmanned Aerial Vehicles contribute positively in paving the way for IoE and Fifth Generation technologies, and tackle some of their comms challenges. Thus, this paper aims to provide an adaptive approach using a Genetic Algorithm (GA) technique by combining indoor and outdoor propagation models to enhance aerial vehicle-to-everything wireless connectivity. The proposed adaptive approach uses a GA multi-objective function that yield optimum values of UAV altitude, elevation angles, and type of building for indoor environment. The proposed GA optimization technique has met the demand of a typical dense-populated urban environment, as well as empowering the IoE with greater coverage footprint, high Quality of Service benchmark, and line-of-sight adaptability. The output results emphasized that the proposed adaptive approach using the GA technique can help in smart decision-making and selecting a proper setup and find the optimum parameters to provide seamless wireless connections from aerial vehicle-to-everything.

This paper presents a flexible standalone, low cost smart home system, which is based on the Andr... more This paper presents a flexible standalone, low cost smart home system, which is based on the Android app communicating with the micro-web server providing more than the switching functionalities. The Arduino Ethernet is used to eliminate the use of a personal computer (PC) keeping the cost of the overall system to a minimum while voice activation is incorporated for switching functionalities. Devices such as light switches, power plugs, temperature sensors, humidity sensors, current sensors, intrusion detection sensors, smoke/gas sensors and sirens have been integrated in the system to demonstrate the feasibility and effectiveness of the proposed smart home system. The smart home app is tested and it is able successfully perform the smart home operations such as switching functionalities, automatic environmental control and intrusion detection, in the later case where an email is generated and the siren goes on.

In this paper, we propose a method to realize a virtual reality MMOG (Massively Multiplayer Onlin... more In this paper, we propose a method to realize a virtual reality MMOG (Massively Multiplayer Online Video Game) with ultra-low latency. The basic idea of the proposed method is to introduce a layer consisting of several fog nodes between clients and cloud server to offload a part of the rendering task which is conducted by the cloud server in conventional cloud games. We examine three techniques to reduce the latency in such a fog-assisted cloud game: 1) To maintain the consistency of the virtual game space, collision detection of virtual objects is conducted by the cloud server in a centralized manner; 2) To reflect subtle changes of the line of sight to the 3D game view, each client is assigned to a fog node and the head motion of the player acquired through HMD (Head-Mounted Display) is directly sent to the corresponding fog node; and 3) To offload a part of the rendering task, we separate the rendering of the background view from that of the foreground view, and migrate the former to other nodes including the cloud server. The performance of the proposed method is evaluated by experiments with an AWS-based prototype system. It is confirmed that the proposed techniques achieve the latency of 32.3 ms, which is 66 % faster than the conventional systems.

The Mobile Adhoc Network (MANET) is a wireless network model for infrastructure-less communicatio... more The Mobile Adhoc Network (MANET) is a wireless network model for infrastructure-less communication, and it provides numerous applications in different areas. The MANET is vulnerable to a Black-hole attack, and it affects routing functionality by dropping all the incoming packets purposefully. The Black-hole attackers pretend that it always has the best path to the destination node to mislead the source nodes. Trust is the critical factor for detecting and isolating the Black-hole attackers from the network. However, the harsh channel conditions make it difficult to differentiate the Black-hole routing activities and accurate trust measurement. Hence, incorporating the consensus-based trust evidence collection from the neighbouring nodes improves the accuracy of trust. For improving the accuracy of trust, this work suggests Consensus Routing and Environmental DIscrete Trust (CREDIT) Based Secure AODV. The CREDIT incorporates Discrete and Consensus trust information. The Discrete parameters represent the specific characteristics of the Black-hole attacks, such as routing behaviour, hop count deviation, and sequence number deviation. The direct trust accurately differentiates the Black-hole attackers using Discrete parameters, only when the nodes perform sufficient communication between the nodes. To solve such issues, the CREDIT includes the Consensus-based trust information. However, secure routing against the Black-hole attack is challenging due to incomplete preferences. The in-degree centrality and Importance degree measurement on the collected consensus-based trust from decision-makers solve the incomplete preference issue as well as improves the accuracy of trust. The performance of the proposed scheme is evaluated using Network Simulator-2 (NS2). From the simulation results, it is proved that the detection accuracy and throughput of the proposed CREDIT are substantially high and the proposed CREDIT scheme outperforms the existing work.

Cloud computing is a growing service computing trend that offers users a range of on-demand varie... more Cloud computing is a growing service computing trend that offers users a range of on-demand variety of services from applications, processing capability, and storage based on the concept of the "Pay-As-Per-Use" model. Organizations from every sector are now realizing the benefits offered by cloud computing technology and moving towards the cloud. Cloud computing offers numerous advantages over conventional computing. However, it still faces a few challenges such as resource utilization in a cloud data centre and quality of service to the end-users due to improper workload balance among available resources. Heterogeneous cloud resources also impact cloud systems overall performance. We proposed an enhanced load balancing algorithm in this research paper for efficient VM allocation in a heterogeneous cloud. Our proposed algorithm allocates independent user tasks or requests to available virtual machines in cloud datacentre efficiently to manage proper load balancing. This algorithm is aimed at minimizing user request response time and the time required for data centre processing. The results obtained showed a significant reduction in user request response time and data centre processing time as compared to "Throttled" and "Round Robin (RR)" algorithms.

Low Power Wide Area Networks (LPWAN) is on the verge of commercialization. The success of LPWAN t... more Low Power Wide Area Networks (LPWAN) is on the verge of commercialization. The success of LPWAN technologies lies in the robustness of the modulation scheme. LoRa is a significant protocol in the segment which uses Chirp Spread Spectrum (CSS) as the modulation scheme. CSS is proven to be robust, ultra-low power consuming and resilient to noise and Doppler effects. Though noise resilience is profound, we investigate issues that may arise as the network scale. Co-Spreading Factor (Co-SF) interference is identified as a major issue that limits the performance of the network. Co-SF interference eventuates when multiple nodes trying to uplink simultaneously at the same Spreading Factor (SF) and almost at the near transmitted power level. Co-SF interference leads to packet error and escalation in the packet on air time which results in performance deterioration. Findings are justified through simulation and experimentation. Possible reasons leading to interference are constringed. Recommendations to reduce the effect of Co-SF interference are suggested and validated through experimentation.

Today, the explosive growth of Multiple Input Multiple Output (MIMO) systems has resulted in a hi... more Today, the explosive growth of Multiple Input Multiple Output (MIMO) systems has resulted in a high data rate and consequently permits the operation of a variety of applications. The MIMO networks are multi-parameter systems, so the choice of a suitable MIMO network in wireless communications is a complex issue. In this paper, a multi-factoring evaluation and comparison framework was introduced and applied to MIMO systems. The proposed methodology is based on a general distance function, named the General Evaluation Factor. This method was applied to MIMO networks that operate over Rayleigh fading channels with different antenna nodes and spacing. The implementation of this method was based on different capacities and cost values. Nevertheless, while only two factors (capacity and cost) were studied in this paper, the proposed approach was able to incorporate additional performance metrics that might be essential for many wireless system designs. The presented framework and results aspire to be useful for network engineering, especially when finding a balance between contradictory factors (e.g. cost and performance metrics) on MIMO networks.

Filter bank multicarrier (FBMC) is considered a competitive waveform candidate for 5G that can re... more Filter bank multicarrier (FBMC) is considered a competitive waveform candidate for 5G that can replace orthogonal frequency division multiplexing (OFDM). However, channel estimation (CE) is a big challenge in FBMC because it suffers from intrinsic interference which is due to the orthogonality of the subcarrier functions in the real field only. In this paper, we investigate a proposed modified interference approximation scheme (M-IAM) by approximating the intrinsic interference from the neighbouring pilots to accommodate the complex channel frequency and thus improving CE performance besides simplifying its processing. The M-IAM scheme has a larger pseudo pilot magnitude than other conventional preamble schemes, namely the interference approximation method (IAM) with its versions (IAM-C) and (E-IAM-C); in addition to the novel preamble design (NPS). In addition, the proposed (M-IAM) scheme is characterized by the lower transmitted power needed. The CE performance of the M-IAM is investigated through 512 and 2048 subcarriers via different types of outdoor and indoor multipath fading channels that are time-invariant such as IEEE 802.22, IEEE 802.11, Rician, and additive white Gaussian noise (AWGN), as well as time-varying channels such as Rayleigh and Vehicular A (Veh-A). Simulation results demonstrate that the proposed M-IAM scheme achieves a lower bit error rate (BER), lower normalized mean square error (NMSE) and lower peak-to-average power ratio (PAPR) over the conventional preamble schemes under the aforementioned channel models. The proposed scheme has the advantage of saving the transmitted power, a requirement that could match 5G low power requirements. KEYWORDS Filter bank multicarrier (FBMC), intrinsic interference, preamble based channel estimation methods

Wireless communication is the most effective communication to convey audio or video information a... more Wireless communication is the most effective communication to convey audio or video information among the population. It enables the masses to connect throughout the world. Wireless technologies improve the lifestyle of individuals in rural and poor communication areas. In this view, the quality of a reliable signal can be enhanced by minimizing carrier interference. In this paper bit error rate of an image, signal is transmitted over fading channel is analyzed using orthogonal frequency multiplexing and channel estimation technique. An Orthogonal Frequency Multiplexing (OFDM) provides prominent bandwidth effectiveness and improved immunity to the fading environments. In OFDM, the data is modulated using multiple numbers of subcarriers that are orthogonal to each other. A cyclic prefix is infixed between OFDM symbols to annihilate the inter symbol interference (ISI) and inter-carrier interference (ICI). The least square channel estimation method is used to minimize the effect of multipath fading. An image, signal is modulated using BPSK, QPSK, 16QAM and 64QAM digital modulation schemes with OFDM and channel estimation and transmitted over AWGN and fading channel. The objective of this work is to improve the signal to noise ratio by reducing interference. The bit error rate vs. signal to noise ratio for BPSK, QPSK, 16QAM and 64QAM without channel estimation at 5dB is 0.4948, 0.4987, 0.4965 and 0.4983 and with channel estimation is 0.099, 0.2600, 0.3900 and 0.4300 respectively. The bit error rate obtained with BPSK, QPSK, 16QAM and 64QAM without channel estimation at SNR of 10dB is 0.4964, 0.4985, 0.4957 and 0.4982 and with channel estimation is 0.033, 0.19, 0.34 and 0.38 respectively. The bit error rate obtained with BPSK, QPSK, 16QAM and 64QAM without channel estimation at SNR of 15dB is 0.4938, 0.4985, 0.4953 and 0.4979 and with channel estimation is 0.0072, 0.1900, 0.3241 and 0.3762 respectively. The error rate is minimized with channel estimation. The error rate increases with the order of modulation and it is noticed that the error rate is minimum with the BPSK modulator and is maximum with 64QAM.

IEEE 802.11 networks have a great role to play in supporting and deploying of the Internet of Thi... more IEEE 802.11 networks have a great role to play in supporting and deploying of the Internet of Things (IoT). The realization of IoT depends on the ability of the network to handle a massive number of stations and transmissions and to support Quality of Service (QoS). IEEE 802.11 networks enable the QoS by applying the Enhanced Distributed Channel Access (EDCA) with static parameters regardless of existing network capacity or which Access Category (AC) of QoS is already active. Our objective in this paper is to improve the efficiency of the uplink access in 802.11 networks; therefore we proposed an algorithm called QoS Categories Activeness-Aware Adaptive EDCA Algorithm (QCAAAE) which adapts Contention Window (CW) size, and Arbitration Inter-Frame Space Number (AIFSN) values depending on the number of associated Stations (STAs) and considering the presence of each AC. For different traffic scenarios, the simulation results confirm the outperformance of the proposed algorithm in terms of throughput (increased on average 23%) and retransmission attempts rate (decreased on average 47%) considering acceptable delay for sensitive delay services.

Wireless communication faces adversities due to noise, fading, and path loss. Multiple-Input Mult... more Wireless communication faces adversities due to noise, fading, and path loss. Multiple-Input Multiple-Output (MIMO) systems are used to overcome individual fading effect by employing transmit diversity. Duo to user single-antenna, Cooperation between at least two users is able to provide spatial diversity. This paper presents the evaluation of the performances of the Amplify and Forward (AF) cooperative system for different relay positions using several network topologies over Rayleigh and Rician fading channel. Furthermore, we present the performances of AF cooperative system with various power allocation. The results show that cooperative communication with convolutional coding shows an outperformance compared to the non-convolutional, which is a promising solution for high data-rate networks such as (WSN), Ad hoc, (IoT), and even mobile networks. When topologies are compared, the simulation shows that, linear topology offers the best BER performance, in contrast when the relay acts as source and the source take the relay place, the analysis result shows that, equilateral triangle topology has the best BER performance and stability, and the system performance with inter-user Rician fading channel is better than the performance of the system with inter-user Rayleigh fading channel.
Uploads
Papers by International Journal of Computer Networks & Communications (IJCNC)
This work investigates the QoS provisioning of various traffic classes on an SDN-enabled network. We propose and implement the class-based adaptive QoS control scheme on SDN-enabled network for various traffic classes, namely VoIP, Video Streaming and File Transfer. The effectiveness of our proposed scheme is validated by simulation using Mininet and Ryu controller. The procedure to create the simulation platform and all details relevant to all software used are described step-by-step in detail. The main performance evaluation metric is the Maximum Number of Traffic Flows admittable with QoS while Average Throughput, Latency, Jitter, and Packet Loss Rate are maintained at the comparable level of the existing work in the literature called JMABC [11]. Our simulation results are illustrated with 95% confidence interval. According to the simulation results, it is obvious that our proposed class-based adaptive QoS control scheme adopting the optimization technique significantly outperforms the existing similar QoS provision scheme in terms of the maximum number of the high priority traffic flows (VoIP) admittable with QoS while the other evaluation metrics are maintained at the same level.