Papers by Miguel Picornell

Pervasive infrastructures, such as cell phone networks, enable to capture large amounts of human ... more Pervasive infrastructures, such as cell phone networks, enable to capture large amounts of human behavioral data but also provide information about the structure of cities and their dynamical properties. In this article, we focus on these last aspects by studying phone data recorded during 55 days in 31 Spanish metropolitan areas. We first define an urban dilatation index which measures how the average distance between individuals evolves during the day, allowing us to highlight different types of city structure. We then focus on hotspots, the most crowded places in the city. We propose a parameter free method to detect them and to test the robustness of our results. The number of these hotspots scales sublinearly with the population size, a result in agreement with previous theoretical arguments and measures on employment datasets. We study the lifetime of these hotspots and show in particular that the hierarchy of permanent ones, which constitute the "heart" of the city,...

PLoS ONE, 2014
The pervasive use of new mobile devices has allowed a better characterization in space and time o... more The pervasive use of new mobile devices has allowed a better characterization in space and time of human concentrations and mobility in general. Besides its theoretical interest, describing mobility is of great importance for a number of practical applications ranging from the forecast of disease spreading to the design of new spaces in urban environments. While classical data sources, such as surveys or census, have a limited level of geographical resolution (e.g., districts, municipalities, counties are typically used) or are restricted to generic workdays or weekends, the data coming from mobile devices can be precisely located both in time and space. Most previous works have used a single data source to study human mobility patterns. Here we perform instead a cross-check analysis by comparing results obtained with data collected from three different sources: Twitter, census and cell phones. The analysis is focused on the urban areas of Barcelona and Madrid, for which data of the three types is available. We assess the correlation between the datasets on different aspects: the spatial distribution of people concentration, the temporal evolution of people density and the mobility patterns of individuals. Our results show that the three data sources are providing comparable information. Even though the representativeness of Twitter geolocated data is lower than that of mobile phone and census data, the correlations between the population density profiles and mobility patterns detected by the three datasets are close to one in a grid with cells of 2 × 2 and 1 × 1 square kilometers. This level of correlation supports the feasibility of interchanging the three data sources at the spatio-temporal scales considered.

Scientific Reports, 2014
Pervasive infrastructures, such as cell phone networks, enable to capture large amounts of human ... more Pervasive infrastructures, such as cell phone networks, enable to capture large amounts of human behavioral data but also provide information about the structure of cities and their dynamical properties. In this article, we focus on these last aspects by studying phone data recorded during 55 days in 31 Spanish metropolitan areas. We first define an urban dilatation index which measures how the average distance between individuals evolves during the day, allowing us to highlight different types of city structure. We then focus on hotspots, the most crowded places in the city. We propose a parameter free method to detect them and to test the robustness of our results. The number of these hotspots scales sublinearly with the population size, a result in agreement with previous theoretical arguments and measures on employment datasets. We study the lifetime of these hotspots and show in particular that the hierarchy of permanent ones, which constitute the 'heart' of the city, is very stable whatever the size of the city. The spatial structure of these hotspots is also of interest and allows us to distinguish different categories of cities, from monocentric and "segregated" where the spatial distribution is very dependent on land use, to polycentric where the spatial mixing between land uses is much more important. These results point towards the possibility of a new, quantitative classification of cities using high resolution spatio-temporal data.

Nature Communications, 2015
The extraction of a clear and simple footprint of the structure of large, weighted and directed n... more The extraction of a clear and simple footprint of the structure of large, weighted and directed networks is a general problem that has many applications. An important example is given by origindestination matrices which contain the complete information on commuting flows, but are difficult to analyze and compare. We propose here a versatile method which extracts a coarse-grained signature of mobility networks, under the form of a 2 × 2 matrix that separates the flows into four categories. We apply this method to origin-destination matrices extracted from mobile phone data recorded in thirty-one Spanish cities. We show that these cities essentially differ by their proportion of two types of flows: integrated (between residential and employment hotspots) and random flows, whose importance increases with city size. Finally the method allows to determine categories of networks, and in the mobility case to classify cities according to their commuting structure.
Influence of sociodemographic characteristics on human mobility
... The Baby Boom-Entering Midlife. Popula-tion Bulletin 46:1-34. ... Racial Differences in the D... more ... The Baby Boom-Entering Midlife. Popula-tion Bulletin 46:1-34. ... Racial Differences in the Determinants of Living Arrange-ments of Widowed and Divorced Elderly Women. The Geroniologist 3 1:496-504. The Commonwealth Fund Commission on Elderly People Living ...
Uploads
Papers by Miguel Picornell