Recessive mutations in FKBP10 at 17q21.2, encoding FKBP65, cause both osteogenesis imperfecta (OI... more Recessive mutations in FKBP10 at 17q21.2, encoding FKBP65, cause both osteogenesis imperfecta (OI) and Bruck syndrome (OI plus congenital contractures). Contractures are a variable manifestation of null/missense FKBP10 mutations. Kuskokwim syndrome (KS) is an autosomal recessive congenital contracture disorder found among Yup'ik Eskimos. Linkage mapping of KS to chromosome 17q21, together with contractures as a feature of FKBP10 mutations, made FKBP10 a candidate gene. We identified a homozygous 3-nucleotide deletion in FKBP10 (c. 877_879delTAC) in multiple Kuskokwim pedigrees; 3% of regional controls are carriers. The mutation deletes the highly conserved p.Tyr293 residue in FKBP65's 3 rd PPIase domain. FKBP10 transcripts are normal, but mutant FKBP65 is destabilized to a residual 5%. Collagen synthesized by KS fibroblasts has substantially decreased hydroxylation of the telopeptide lysine crucial for collagen cross-linking, with 2-10% hydroxylation in probands vs 60% in controls. Matrix deposited by KS fibroblasts has marked reduction in maturely cross-linked collagen. KS collagen is disorganized in matrix, and fibrils formed in vitro had subtle loosening of monomer packing. Our results imply that FKBP10 mutations affect collagen indirectly, by ablating FKBP65 support for collagen telopeptide hydroxylation by LH2, thus decreasing collagen crosslinks in tendon and bone matrix. FKBP10 mutations may also underlie other arthrogryposis syndromes.
Carolina Digital Repository (University of North Carolina at Chapel Hill), 2014
Cyclophilin B (CyPB), encoded by PPIB, is an ER-resident peptidyl-prolyl cis-trans isomerase (PPI... more Cyclophilin B (CyPB), encoded by PPIB, is an ER-resident peptidyl-prolyl cis-trans isomerase (PPIase) that functions independently and as a component of the collagen prolyl 3-hydroxylation complex. CyPB is proposed to be the major PPIase catalyzing the rate-limiting step in collagen folding. Mutations in PPIB cause recessively inherited osteogenesis imperfecta type IX, a moderately severe to lethal bone dysplasia. To investigate the role of CyPB in collagen folding and post-translational modifications, we generated Ppib 2/2 mice that recapitulate the OI phenotype. Knock-out (KO) mice are small, with reduced femoral areal bone mineral density (aBMD), bone volume per total volume (BV/TV) and mechanical properties, as well as increased femoral brittleness. Ppib transcripts are absent in skin, fibroblasts, femora and calvarial osteoblasts, and CyPB is absent from KO osteoblasts and fibroblasts on western blots. Only residual (2-11%) collagen prolyl 3-hydroxylation is detectable in KO cells and tissues. Collagen folds more slowly in the absence of CyPB, supporting its ratelimiting role in folding. However, treatment of KO cells with cyclosporine A causes further delay in folding, indicating the potential existence of another collagen PPIase. We confirmed and extended the reported role of CyPB in supporting collagen lysyl hydroxylase (LH1) activity. Ppib 2/2 fibroblast and osteoblast collagen has normal total lysyl hydroxylation, while increased collagen diglycosylation is observed. Liquid chromatography/mass spectrometry (LC/MS) analysis of bone and osteoblast type I collagen revealed site-specific alterations of helical lysine hydroxylation, in particular, significantly reduced hydroxylation of helical crosslinking residue K87. Consequently, underhydroxylated forms of di-and trivalent crosslinks are strikingly increased in KO bone, leading to increased total crosslinks and decreased helical hydroxylysine-to lysine-derived crosslink ratios. The altered crosslink pattern was associated with decreased collagen deposition into matrix in culture, altered fibril structure in tissue, and reduced bone strength. These studies demonstrate novel consequences of the indirect regulatory effect of CyPB on collagen hydroxylation, impacting collagen glycosylation, crosslinking and fibrillogenesis, which contribute to maintaining bone mechanical properties.
Classical osteogenesis imperfecta (OI) is a dominant genetic disorder of connective tissue caused... more Classical osteogenesis imperfecta (OI) is a dominant genetic disorder of connective tissue caused by mutations in either of the two genes encoding type I collagen, COL1A1 and COL1A2. Recent investigations, however, have generated a new paradigm for OI incorporating many of the prototypical features that distinguish dominant and recessive conditions, within a type I collagen framework. We and others have shown that the long-sought cause of the recessive form of OI, first postulated in the Sillence classification, lies in defects in the genes encoding cartilage-associated protein (CRTAP) or prolyl 3-hydroxylase 1 (P3H1/LEPRE1). Together with cyclophilin B (PPIB), CRTAP and P3H1 comprise the collagen prolyl 3-hydroxylation complex, which catalyzes a specific post-translational modification of types I, II, and V collagen, and may act as a general chaperone. Patients with mutations in CRTAP or LEPRE1 have a lethal to severe osteochondrodystrophy that overlaps with Sillence types II and III OI but has distinctive features. Infants with recessive OI have white sclerae, undertubulation of the long bones, gracile ribs without beading, and a small to normal head circumference. Those who survive to childhood or the teen years have severe growth deficiency and extreme bone fragility. Most causative mutations result in null alleles, with the absence or severe reduction of gene transcripts and proteins. As expected, 3-hydroxylation of the Pro986 residue is absent or severly reduced, but bone severity and survival length do not correlate with the extent of residual hydroxylation. Surprisingly, the collagen produced by cells with an absence of Pro986 hydroxylation has helical overmodification by lysyl hydroxylase and prolyl 4-hydroxylase, indicating that the folding of the collagen helix has been substantially delayed.
Cyclophilin B (CyPB), encoded by PPIB, is an ER-resident peptidyl-prolyl cis-trans isomerase (PPI... more Cyclophilin B (CyPB), encoded by PPIB, is an ER-resident peptidyl-prolyl cis-trans isomerase (PPIase) that functions independently and as a component of the collagen prolyl 3-hydroxylation complex. CyPB is proposed to be the major PPIase catalyzing the rate-limiting step in collagen folding. Mutations in PPIB cause recessively inherited osteogenesis imperfecta type IX, a moderately severe to lethal bone dysplasia. To investigate the role of CyPB in collagen folding and post-translational modifications, we generated Ppib 2/2 mice that recapitulate the OI phenotype. Knock-out (KO) mice are small, with reduced femoral areal bone mineral density (aBMD), bone volume per total volume (BV/TV) and mechanical properties, as well as increased femoral brittleness. Ppib transcripts are absent in skin, fibroblasts, femora and calvarial osteoblasts, and CyPB is absent from KO osteoblasts and fibroblasts on western blots. Only residual (2-11%) collagen prolyl 3-hydroxylation is detectable in KO cells and tissues. Collagen folds more slowly in the absence of CyPB, supporting its ratelimiting role in folding. However, treatment of KO cells with cyclosporine A causes further delay in folding, indicating the potential existence of another collagen PPIase. We confirmed and extended the reported role of CyPB in supporting collagen lysyl hydroxylase (LH1) activity. Ppib 2/2 fibroblast and osteoblast collagen has normal total lysyl hydroxylation, while increased collagen diglycosylation is observed. Liquid chromatography/mass spectrometry (LC/MS) analysis of bone and osteoblast type I collagen revealed site-specific alterations of helical lysine hydroxylation, in particular, significantly reduced hydroxylation of helical crosslinking residue K87. Consequently, underhydroxylated forms of di-and trivalent crosslinks are strikingly increased in KO bone, leading to increased total crosslinks and decreased helical hydroxylysine-to lysine-derived crosslink ratios. The altered crosslink pattern was associated with decreased collagen deposition into matrix in culture, altered fibril structure in tissue, and reduced bone strength. These studies demonstrate novel consequences of the indirect regulatory effect of CyPB on collagen hydroxylation, impacting collagen glycosylation, crosslinking and fibrillogenesis, which contribute to maintaining bone mechanical properties.
The Journal of Clinical Endocrinology & Metabolism, 2013
Osteogenesis imperfecta (OI) is a heritable bone dysplasia characterized by bone fragility and de... more Osteogenesis imperfecta (OI) is a heritable bone dysplasia characterized by bone fragility and deformity and growth deficiency. Most cases of OI (classical types) have autosomal dominant inheritance and are caused by mutations in the type I collagen genes. During the past several years, a number of noncollagenous genes whose protein products interact with collagen have been identified as the cause(s) of rare forms of OI. This has led to a paradigm shift for OI as a collagen-related condition. The majority of the non-classical OI types have autosomal recessive inheritance and null mutations in their respective genes. The exception is a unique dominant defect in IFITM5, which encodes Bril and leads to hypertrophic callus and interosseous membrane ossification. Three recessive OI types arise from defects in any of the components of the collagen prolyl 3-hydroxylation complex (CRTAP, P3H1, CyPB), which modifies the collagen α1(I)Pro986 residue. Complex dysfunction leads to delayed foldi...
Results: We observed a marked reduction in the number of CD34 positive-cells in the skin of patie... more Results: We observed a marked reduction in the number of CD34 positive-cells in the skin of patients with systemic sclerosis. It occurred early, and could be noted in patients with one year or less of disease duration. The reduction of CD34 positive-cells preceded the appearance of intense fibrosis. Conclusion: Our results suggest that CD34 positive-cells may contribute to normal regulation of extracellular assembly and its diminution is associated with intense collagen deposition in scleroderma skin. (Suported by CNPq and Faperj grants).
The limited accessibility of bone and its mineralized nature have restricted deep investigation o... more The limited accessibility of bone and its mineralized nature have restricted deep investigation of its biology. Recent breakthroughs in identification of mutant proteins affecting bone tissue homeostasis in rare skeletal diseases have revealed novel pathways involved in skeletal development and maintenance. The characterization of new dominant, recessive and X‐linked forms of the rare brittle bone disease osteogenesis imperfecta (OI) and other OI‐related bone fragility disorders was a key player in this advance. The development of in vitro models for these diseases along with the generation and characterization of murine and zebrafish models contributed to dissecting previously unknown pathways. Here, we describe the most recent advances in the understanding of processes involved in abnormal bone mineralization, collagen processing and osteoblast function, as illustrated by the characterization of new causative genes for OI and OI‐related fragility syndromes. The coordinated role of...
Recessive osteogenesis imperfecta (OI) is caused by defects in proteins involved in post-translat... more Recessive osteogenesis imperfecta (OI) is caused by defects in proteins involved in post-translational interactions with type I collagen. Recently, a novel form of moderately severe OI caused by null mutations in TMEM38B was identified. TMEM38B encodes the ER membrane monovalent cation channel, TRIC-B, proposed to counterbalance IP3R-mediated Ca2+ release from intracellular stores. The molecular mechanisms by which TMEM38B mutations cause OI are unknown. We identified 3 probands with recessive defects in TMEM38B. TRIC-B protein is undetectable in proband fibroblasts and osteoblasts, although reduced TMEM38B transcripts are present. TRIC-B deficiency causes impaired release of ER luminal Ca2+, associated with deficient store-operated calcium entry, although SERCA and IP3R have normal stability. Notably, steady state ER Ca2+ is unchanged in TRIC-B deficiency, supporting a role for TRIC-B in the kinetics of ER calcium depletion and recovery. The disturbed Ca2+ flux causes ER stress and...
Proceedings of the National Academy of Sciences, 1982
We have investigated the unusual physical properties of a restriction fragment of Leishmania tare... more We have investigated the unusual physical properties of a restriction fragment of Leishmania tarentolae kinetoplast DNA. A gel-purified fragment comprising slightly more than half of a minicircle was determined by Maxam-Gilbert sequence determination to be 490 base pairs (bp) in length. This fragment has dramatically anomalous electrophoretic behavior; it has an apparent size of 450 bp on a 1% agarose gel but migrates as 1,380 bp on a 12% polyacrylamide gel. However, in gel filtration on Sephacryl S-500, the fragment elutes with an apparent size of 375 bp. Finally, it behaves anomalously in electric dichroism experiments. Field-free rotational relaxation times from transient electric dichroism studies are highly sensitive to effective molecular dimensions. The rotational relaxation time of the kinetoplast fragment is smaller than that of a 309-bp control fragment from pBR322. Because rigorous control experiments rule out the possibility that this fragment is modified, these anomalou...
Uploads
Papers by Joan Marini