The invention relates to compds. and pharmaceutical compns. useful in combination with tetracycli... more The invention relates to compds. and pharmaceutical compns. useful in combination with tetracyclines in the treatment of bacterial infections caused by Gram- pos. and Gram- neg. pathogens, with particular efficacy in tetracycline resistant strains. These compds. specifically bind to TetR and therefore prevent the transcriptional activation of tet resistance genes. The compds. have a potentiating effect on the activity of members of the tetracycline family, in particular of tetracycline, minocycline, doxycycline and tigecycline, in the treatment of tetracycline susceptible, intermediate and tetracycline resistant pathogens.
The cyclic dinucleotides 3'-5'diadenylate (c-diAMP) and 3'-5' diguanylate (c-diGMP) are important... more The cyclic dinucleotides 3'-5'diadenylate (c-diAMP) and 3'-5' diguanylate (c-diGMP) are important bacterial second messengers that have recently been shown to stimulate the secretion of type I Interferons (IFN-Is) through the c-diGMP-binding protein MPYS/STING. Here, we show that physiologically relevant levels of cyclic dinucleotides also stimulate a robust secretion of IL-1b through the NLRP3 inflammasome. Intriguingly, this response is independent of MPYS/STING. Consistent with most NLRP3 inflammasome activators, the response to c-diGMP is dependent on the mobilization of potassium and calcium ions. However, in contrast to other NLRP3 inflammasome activators, this response is not associated with significant changes in mitochondrial potential or the generation of mitochondrial reactive oxygen species. Thus, cyclic dinucleotides activate the NLRP3 inflammasome through a unique pathway that could have evolved to detect pervasive bacterial pathogen-associated molecular patterns associated with intracellular infections.
Macrophages respond to infection with Legionella pneumophila by the induction of inflammatory med... more Macrophages respond to infection with Legionella pneumophila by the induction of inflammatory mediators, including type I Interferons (IFN-Is). To explore whether the bacterial second messenger cyclic 3'-5' diguanylate (c-diGMP) activates some of these mediators, macrophages were infected with L. pneumophila strains in which the levels of bacterial c-diGMP had been altered. Intriguingly, there was a positive correlation between c-diGMP levels and IFN-I expression. Subsequent studies with synthetic derivatives of cdiGMP, and newly described 3'-5' diadenylate (c-diAMP), determined that these molecules activate overlapping inflammatory responses in human and murine macrophages. Moreover, UV cross-linking studies determined that both dinucleotides physically associate with a shared set of host proteins. Fractionation of macrophage extracts on a biotin-c-diGMP affinity matrix led to the identification of a set of candidate host binding proteins. These studies suggest that mammalian macrophages can sense and mount a specific inflammatory response to bacterial dinucleotides.
Proteins that metabolize or bind the nucleotide second messenger cyclic diguanylate regulate a wi... more Proteins that metabolize or bind the nucleotide second messenger cyclic diguanylate regulate a wide variety of important processes in bacteria. These processes include motility, biofilm formation, cell division, differentiation, and virulence. The role of cyclic diguanylate signaling in the lifestyle of Legionella pneumophila, the causative agent of Legionnaires' disease, has not previously been examined. The L. pneumophila genome encodes 22 predicted proteins containing domains related to cyclic diguanylate synthesis, hydrolysis, and recognition. We refer to these genes as cdgS (cyclic diguanylate signaling) genes. Strains of L. pneumophila containing deletions of all individual cdgS genes were created and did not exhibit any observable growth defect in growth medium or inside host cells. However, when overexpressed, several cdgS genes strongly decreased the ability of L. pneumophila to grow inside host cells. Expression of these cdgS genes did not affect the Dot/Icm type IVB secretion system, the major determinant of intracellular growth in L. pneumophila. L. pneumophila strains overexpressing these cdgS genes were less cytotoxic to THP-1 macrophages than wild-type L. pneumophila but retained the ability to resist grazing by amoebae. In many cases, the intracellular-growth inhibition caused by cdgS gene overexpression was independent of diguanylate cyclase or phosphodiesterase activities. Expression of the cdgS genes in a Salmonella enterica serovar Enteritidis strain that lacks all diguanylate cyclase activity indicated that several cdgS genes encode potential cyclases. These results indicate that components of the cyclic diguanylate signaling pathway play an important role in regulating the ability of L. pneumophila to grow in host cells. IMPORTANCE All bacteria must sense and respond to environmental cues. Intracellular bacterial pathogens must detect and respond to host functions that limit their ability to carry out a successful infection. Small-molecule second messengers play key roles in transmitting signals from environmental receptors to the proteins and other components that respond to signals. Cyclic diguanylate is a ubiquitous bacterial second messenger known to play an important role in many sensing and signaling systems in bacteria. The causative agent of Legionnaires' disease, Legionella pneumophila, is an intracellular pathogen that grows inside environmental protists and human macrophages by subverting the normal processes that these cells use to capture and destroy bacteria. We show that the several cyclic diguanylate signaling components in Legionella play a role in the ability to grow inside both kinds of host cells. This work highlights the role of cyclic diguanylate signaling during intracellular growth.
The Gram-negative Caulobacter crescentus exports RsaA, the crystalline S-layer subunit protein us... more The Gram-negative Caulobacter crescentus exports RsaA, the crystalline S-layer subunit protein using a dedicated type I secretion system. The protein and two transporter genes (rsaADE) are located together, comparable to the Escherichia coli type I hemolysin hlyCABD operon, where read through of a stem loop following hlyCA results in reduced transcription of the hlyBD. Using two genetic approaches and a direct assessment of transcription from regions 5 0 to the genes we learned that rsaD and rsaE were transcribed together as a separate transcript from rsaA. These results are contrary to previous assumptions about the rsaADE type I secretion gene control and add another theme to the area of type I secretion transcription regulation. It may be that to accommodate the high levels of RsaA secretion, the type I transporters must be transcribed independently from rsaA.
Uploads
Papers by Assaf Levi