
Krystyna Oracz
I am a leader of the SeedExplorerGroup (www.seedexplorer.eu) at WULS-SGGW in Warsaw (Poland). I am aware about the important recent advances in seed biology. With my group we elucidate the molecular mechanisms of regulation of seed germination and dormancy, with a focus on the role of Reactive Oxygen Species (ROS) and phytohormones.
Since 2015 I am also a Secretary of the Plant Oxygen Group http://www.plantoxygengroup.org/.
Since 2015 I am also a Secretary of the Plant Oxygen Group http://www.plantoxygengroup.org/.
less
InterestsView All (10)
Uploads
Papers by Krystyna Oracz
traits, for which an optimal solution is environmentally dependent. Understanding the miRNA-mediated post-transcriptional regulation of gene expression determining seed phenotype and number is crucial from both an evolutionary and applied perspective. Although extensive research has concentrated on the individual roles of miRNAs in plant life, fewer studies have centred on their functional interactions, hence this study aimed to examine whether the module of miR165/miR166 and/or
miR160 interactions is involved in forming Arabidopsis thaliana seeds, and/or has an impact on their features. Considering that reactive oxygen species (ROS) are among key players in seed-related processes, it was also intriguing to verify if the mechanism of action of these miRNAs is associated with the ROS pathway. The plant material used in this study consisted of flower buds, green siliques, and freshly harvested seeds, of wild type (WT), and STTM165/166 and STTM160 × 165/166 mutants of A. thaliana plants which are powerful tools for functional analysis of miRNAs in plants. The novel results obtained during physiological phenotyping together with two-tailed qRT-PCR analysis of mature miR165, miR166, miR160, and spectrofluorimetric measurement of apoplastic hydrogen peroxide (H2O2) for the first time revealed that interaction between
miR165/miR166 and miR160 may regulate seed size, weight and number in ROS-dependent manner.
udział białek AGO w kilku innych procesach komórkowych, takich jak np.: regulacja transkrypcji, sekwestracja, zależna od RNA metylacja DNA, naprawa uszkodzeń DNA, synteza siRNA niezależna od białek DCL (ang. DICER-like), czy też kotranskrypcyjna regulacja ekspresji genów MIRNA i splicingu intronów. Poszczególne gatunki roślin charakteryzują się
obecnością różnej liczby białek AGO, w wielu przypadkach o nieznanej jeszcze regulatorowej i/lub biologicznej funkcji. Niniejszy artykuł przeglądowy obejmuje aktualną wiedzę na temat funkcji roślinnych AGO w biologii komórki i rozwoju roślin.