After World War II, quite a few mathematicians were attracted to the modeling of phase transitions as this area of physics was seeing considerable mathematical difficulties. This paper studies their contributions to the physics of phase...
moreAfter World War II, quite a few mathematicians were attracted to the modeling of phase transitions as this area of physics was seeing considerable mathematical difficulties. This paper studies their contributions to the physics of phase transitions, and in particular those of the by far most productive and successful of them, the Polish-American mathematician Mark Kac (1914-1984). The focus is on the resources, values, and traditions that the mathematicians brought with them and how these differed from those of contemporary physicists as well as the mathematicians' relations with the physicists in terms of collaboration and reception of results. 1. Introduction After World War II, quite a few mathematicians, including Mark Kac, John von Neumann, and Nobert Wiener, worked on the physical problem of phase transitions, i.e. changes in the state of matter caused by gradual changes of physical parameters such as the condensation of a gas to a liquid and the loss of magnetization of a ferromagnet above a certain temperature (called the Curie temperature). The significance of these mathematicians was not so much that they brought mathematical rigor to the theoretical description of the phenomena, 1 but that they applied their mathematical