The increased access to powerful processors has made possible significant progress in natural language processing (NLP). We find more research in NLP targeting diverse spectrum of major industries that use voice recognition,...
moreThe increased access to powerful processors has made possible significant progress in natural language processing (NLP). We find more research in NLP targeting diverse spectrum of major industries that use voice recognition, text-to-speech (TTS) solutions, speech translation, natural language understanding (NLU), and many other applications and techniques related to these areas.
This book presents the latest research related to natural language processing and speech technology and sheds light on the main topics for readers interested in this field. For TTS and automatic speech recognition, it is demonstrated how to explore transfer learning in order to generate speech in other voices from TTS of a specific language (Italian), and to improve speech recognition for non-native English.
Language resources are the cornerstone for building high-quality systems; however, some languages, as Arabic, are considered under-resourced compared to English. Thus, a new Arabic linguistic pipeline for NLP is presented to enrich the Arabic language resources and to solve common NLP issues, like word segmentation, POS tagging, and lemmatization. Arabic named entity recognition, a challenging task, has been resolved within this book using transformer-based-CRF model.
In addition, the readers of this book will discover conceptions and solutions for other NLP issues such as language modeling, question answering, dialog systems, and sentence embeddings.