Suppression of $1/f$ noise in quantum simulators of gauge theories
2022, arXiv (Cornell University)
https://doi.org/10.48550/ARXIV.2210.06489Abstract
A. Further details on the derivation of the Bloch-Redfield master equation 7 B. Perturbation theory 8 C. Supplemental numerical results 9 References 9
References (98)
- Immanuel Bloch, Jean Dalibard, and Wilhelm Zwerger, "Many-body physics with ultracold gases," Rev. Mod. Phys. 80, 885-964 (2008).
- Philipp Hauke, Fernando M Cucchietti, Luca Taglia- cozzo, Ivan Deutsch, and Maciej Lewenstein, "Can one trust quantum simulators?" Reports on Progress in Physics 75, 082401 (2012).
- I. M. Georgescu, S. Ashhab, and Franco Nori, "Quantum simulation," Rev. Mod. Phys. 86, 153-185 (2014).
- Ehud Altman, Kenneth R. Brown, Giuseppe Carleo, Lin- coln D. Carr, Eugene Demler, Cheng Chin, Brian De- Marco, Sophia E. Economou, Mark A. Eriksson, Kai- Mei C. Fu, Markus Greiner, Kaden R.A. Hazzard, Randall G. Hulet, Alicia J. Kollár, Benjamin L. Lev, Mikhail D. Lukin, Ruichao Ma, Xiao Mi, Shashank Misra, Christopher Monroe, Kater Murch, Zaira Nazario, Kang-Kuen Ni, Andrew C. Potter, Pedram Roushan, Mark Saffman, Monika Schleier-Smith, Irfan Siddiqi, Raymond Simmonds, Meenakshi Singh, I.B. Spielman, Kristan Temme, David S. Weiss, Jelena Vučković, Vladan Vuletić, Jun Ye, and Martin Zwierlein, "Quantum simu- lators: Architectures and opportunities," PRX Quantum 2, 017003 (2021).
- H.J. Rothe, Lattice Gauge Theories: An Introduction, EBSCO ebook academic collection (World Scientific, 2005).
- Yuri Alexeev, Dave Bacon, Kenneth R. Brown, Robert Calderbank, Lincoln D. Carr, Frederic T. Chong, Brian DeMarco, Dirk Englund, Edward Farhi, Bill Fefferman, Alexey V. Gorshkov, Andrew Houck, Jungsang Kim, Shelby Kimmel, Michael Lange, Seth Lloyd, Mikhail D. Lukin, Dmitri Maslov, Peter Maunz, Christopher Mon- roe, John Preskill, Martin Roetteler, Martin J. Savage, and Jeff Thompson, "Quantum computer systems for sci- entific discovery," (2021).
- Natalie Klco, Alessandro Roggero, and Martin J Savage, "Standard model physics and the digital quantum revolu- tion: thoughts about the interface," Reports on Progress in Physics 85, 064301 (2022).
- M. Dalmonte and S. Montangero, "Lattice gauge theory simulations in the quantum information era," Contemporary Physics 57, 388-412 (2016), https://doi.org/10.1080/00107514.2016.1151199.
- Erez Zohar, J Ignacio Cirac, and Benni Reznik, "Quan- tum simulations of lattice gauge theories using ultracold atoms in optical lattices," Reports on Progress in Physics 79, 014401 (2015).
- Monika Aidelsburger, Luca Barbiero, Alejandro Bermudez, Titas Chanda, Alexandre Dauphin, Daniel González-Cuadra, Przemys law R. Grzybowski, Si- mon Hands, Fred Jendrzejewski, Johannes Jünemann, Gediminas Juzeliūnas, Valentin Kasper, Angelo Piga, Shi-Ju Ran, Matteo Rizzi, Germán Sierra, Luca Tagli- acozzo, Emanuele Tirrito, Torsten V. Zache, Jakub Zakrzewski, Erez Zohar, and Maciej Lewenstein, "Cold atoms meet lattice gauge theory," Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 380, 20210064 (2022), https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2021.0064.
- Erez Zohar, "Quantum simulation of lattice gauge the- ories in more than one space dimension-requirements, challenges and methods," Philosophical Transactions of the Royal Society of London Series A 380, 20210069 (2022), arXiv:2106.04609 [quant-ph].
- Christian W. Bauer. Zohreh Davoudi, A. Baha Balantekin, Tanmoy Bhattacharya, Marcela Carena, Wibe A. de Jong, Patrick Draper, Aida El-Khadra, Nate Gemelke, Masanori Hanada, Dmitri Kharzeev, Henry Lamm, Ying-Ying Li, Junyu Liu, Mikhail Lukin, Yan- nick Meurice, Christopher Monroe, Benjamin Nachman, Guido Pagano, John Preskill, Enrico Rinaldi, Alessan- dro Roggero, David I. Santiago, Martin J. Savage, Ir- fan Siddiqi, George Siopsis, David Van Zanten, Nathan Wiebe, Yukari Yamauchi, Kübra Yeter-Aydeniz, and Silvia Zorzetti, "Quantum simulation for high energy physics," (2022), 10.48550/ARXIV.2204.03381.
- Simon Catterall, Roni Harnik, Veronika E. Hubeny, Christian W. Bauer, Asher Berlin, Zohreh Davoudi, Thomas Faulkner, Thomas Hartman, Matthew Head- rick, Yonatan F. Kahn, Henry Lamm, Yannick Meurice, Surjeet Rajendran, Mukund Rangamani, and Brian Swingle, "Report of the snowmass 2021 theory frontier topical group on quantum information science," (2022), 10.48550/ARXIV.2209.14839.
- Esteban A. Martinez, Christine A. Muschik, Philipp Schindler, Daniel Nigg, Alexander Erhard, Markus Heyl, Philipp Hauke, Marcello Dalmonte, Thomas Monz, Peter Zoller, and Rainer Blatt, "Real-time dynamics of lattice gauge theories with a few-qubit quantum computer," Na- ture 534, 516-519 (2016).
- Christine Muschik, Markus Heyl, Esteban Martinez, Thomas Monz, Philipp Schindler, Berit Vogell, Mar- cello Dalmonte, Philipp Hauke, Rainer Blatt, and Pe- ter Zoller, "U(1) wilson lattice gauge theories in digital quantum simulators," New Journal of Physics 19, 103020 (2017).
- Hannes Bernien, Sylvain Schwartz, Alexander Keesling, Harry Levine, Ahmed Omran, Hannes Pichler, Soon- won Choi, Alexander S. Zibrov, Manuel Endres, Markus Greiner, Vladan Vuletić, and Mikhail D. Lukin, "Prob- ing many-body dynamics on a 51-atom quantum simula- tor," Nature 551, 579-584 (2017).
- N. Klco, E. F. Dumitrescu, A. J. McCaskey, T. D. Mor- ris, R. C. Pooser, M. Sanz, E. Solano, P. Lougovski, and M. J. Savage, "Quantum-classical computation of schwinger model dynamics using quantum computers," Phys. Rev. A 98, 032331 (2018).
- C. Kokail, C. Maier, R. van Bijnen, T. Brydges, M. K. Joshi, P. Jurcevic, C. A. Muschik, P. Silvi, R. Blatt, C. F. Roos, and P. Zoller, "Self-verifying variational quan- tum simulation of lattice models," Nature 569, 355-360 (2019).
- Christian Schweizer, Fabian Grusdt, Moritz Berngruber, Luca Barbiero, Eugene Demler, Nathan Goldman, Im- manuel Bloch, and Monika Aidelsburger, "Floquet ap- proach to Z2 lattice gauge theories with ultracold atoms in optical lattices," Nature Physics 15, 1168-1173 (2019).
- Frederik Görg, Kilian Sandholzer, Joaquín Minguzzi, Rémi Desbuquois, Michael Messer, and Tilman Esslinger, "Realization of density-dependent peierls phases to engineer quantized gauge fields coupled to ul- tracold matter," Nature Physics 15, 1161-1167 (2019).
- Alexander Mil, Torsten V. Zache, Apoorva Hegde, Andy Xia, Rohit P. Bhatt, Markus K. Oberthaler, Philipp Hauke, Jürgen Berges, and Fred Jendrzejewski, "A scal- able realization of local u(1) gauge invariance in cold atomic mixtures," Science 367, 1128-1130 (2020).
- Natalie Klco, Martin J. Savage, and Jesse R. Stryker, "Su(2) non-abelian gauge field theory in one dimen- sion on digital quantum computers," Phys. Rev. D 101, 074512 (2020).
- Bing Yang, Hui Sun, Robert Ott, Han-Yi Wang, Torsten V. Zache, Jad C. Halimeh, Zhen-Sheng Yuan, Philipp Hauke, and Jian-Wei Pan, "Observation of gauge invariance in a 71-site bose-hubbard quantum simula- tor," Nature 587, 392-396 (2020).
- Zhao-Yu Zhou, Guo-Xian Su, Jad C. Halimeh, Robert Ott, Hui Sun, Philipp Hauke, Bing Yang, Zhen- Sheng Yuan, Jürgen Berges, and Jian-Wei Pan, "Thermalization dynamics of a gauge theory on a quantum simulator," Science 377, 311-314 (2022), https://www.science.org/doi/pdf/10.1126/science.abl6277.
- Nhung H. Nguyen, Minh C. Tran, Yingyue Zhu, Alaina M. Green, C. Huerta Alderete, Zohreh Davoudi, and Norbert M. Linke, "Digital quantum simulation of the schwinger model and symmetry protection with trapped ions," (2021), 10.48550/ARXIV.2112.14262.
- Zhan Wang, Zi-Yong Ge, Zhongcheng Xiang, Xiaohui Song, Rui-Zhen Huang, Pengtao Song, Xue-Yi Guo, Luhong Su, Kai Xu, Dongning Zheng, and Heng Fan, "Observation of emergent Z2 gauge invariance in a su- perconducting circuit," Phys. Rev. Research 4, L022060 (2022).
- Julius Mildenberger, Wojciech Mruczkiewicz, Jad C. Hal- imeh, Zhang Jiang, and Philipp Hauke, "Probing con- finement in a Z2 lattice gauge theory on a quantum computer," arXiv e-prints , arXiv:2203.08905 (2022), arXiv:2203.08905 [quant-ph].
- S. Weinberg, The Quantum Theory of Fields, Vol. 2: Modern Applications (Cambridge University Press, 1995).
- C. Gattringer and C. Lang, Quantum Chromodynamics on the Lattice: An Introductory Presentation, Lecture Notes in Physics (Springer Berlin Heidelberg, 2009).
- A. Zee, Quantum Field Theory in a Nutshell (Princeton University Press, 2003).
- Jad C. Halimeh and Philipp Hauke, "Reliability of lattice gauge theories," Phys. Rev. Lett. 125, 030503 (2020).
- Jad C. Halimeh and Philipp Hauke, "Staircase prether- malization and constrained dynamics in lattice gauge the- ories," (2020), arXiv:2004.07248 [cond-mat.quant-gas].
- Jad C. Halimeh and Philipp Hauke, "Origin of stair- case prethermalization in lattice gauge theories," (2020), arXiv:2004.07254 [cond-mat.str-el].
- Jad C. Halimeh, Valentin Kasper, and Philipp Hauke, "Fate of lattice gauge theories under decoherence," (2020), arXiv:2009.07848 [cond-mat.quant-gas].
- Erez Zohar and Benni Reznik, "Confinement and lattice quantum-electrodynamic electric flux tubes simulated with ultracold atoms," Phys. Rev. Lett. 107, 275301 (2011).
- Erez Zohar, J. Ignacio Cirac, and Benni Reznik, "Sim- ulating compact quantum electrodynamics with ultra- cold atoms: Probing confinement and nonperturbative effects," Phys. Rev. Lett. 109, 125302 (2012).
- D. Banerjee, M. Dalmonte, M. Müller, E. Rico, P. Ste- bler, U.-J. Wiese, and P. Zoller, "Atomic quantum simu- lation of dynamical gauge fields coupled to fermionic mat- ter: From string breaking to evolution after a quench," Phys. Rev. Lett. 109, 175302 (2012).
- Erez Zohar, J. Ignacio Cirac, and Benni Reznik, "Sim- ulating (2 + 1)-dimensional lattice qed with dynamical matter using ultracold atoms," Phys. Rev. Lett. 110, 055302 (2013).
- D. Banerjee, M. Bögli, M. Dalmonte, E. Rico, P. Stebler, U.-J. Wiese, and P. Zoller, "Atomic quantum simulation of U(n) and SU(n) non-abelian lattice gauge theories," Phys. Rev. Lett. 110, 125303 (2013).
- P. Hauke, D. Marcos, M. Dalmonte, and P. Zoller, "Quantum simulation of a lattice schwinger model in a chain of trapped ions," Phys. Rev. X 3, 041018 (2013).
- K. Stannigel, P. Hauke, D. Marcos, M. Hafezi, S. Diehl, M. Dalmonte, and P. Zoller, "Constrained dynamics via the zeno effect in quantum simulation: Implement- ing non-abelian lattice gauge theories with cold atoms," Phys. Rev. Lett. 112, 120406 (2014).
- Stefan Kühn, J. Ignacio Cirac, and Mari-Carmen Bañuls, "Quantum simulation of the schwinger model: A study of feasibility," Phys. Rev. A 90, 042305 (2014).
- Yoshihito Kuno, Kenichi Kasamatsu, Yoshiro Takahashi, Ikuo Ichinose, and Tetsuo Matsui, "Real-time dy- namics and proposal for feasible experiments of lattice gauge-higgs model simulated by cold atoms," New Jour- nal of Physics 17, 063005 (2015).
- Dayou Yang, Gouri Shankar Giri, Michael Johanning, Christof Wunderlich, Peter Zoller, and Philipp Hauke, "Analog quantum simulation of (1 + 1)-dimensional lat- tice qed with trapped ions," Phys. Rev. A 94, 052321 (2016).
- Yoshihito Kuno, Shinya Sakane, Kenichi Kasamatsu, Ikuo Ichinose, and Tetsuo Matsui, "Quantum simula- tion of (1 + 1)-dimensional u(1) gauge-higgs model on a lattice by cold bose gases," Phys. Rev. D 95, 094507 (2017).
- A. S. Dehkharghani, E. Rico, N. T. Zinner, and A. Ne- gretti, "Quantum simulation of abelian lattice gauge the- ories via state-dependent hopping," Phys. Rev. A 96, 043611 (2017).
- Omjyoti Dutta, Luca Tagliacozzo, Maciej Lewenstein, and Jakub Zakrzewski, "Toolbox for abelian lattice gauge theories with synthetic matter," Phys. Rev. A 95, 053608 (2017).
- João C. Pinto Barros, Michele Burrello, and Andrea Trombettoni, "Gauge theories with ultracold atoms," in Strongly Coupled Field Theories for Condensed Mat- ter and Quantum Information Theory, edited by Al- varo Ferraz, Kumar S. Gupta, Gordon Walter Semenoff, and Pasquale Sodano (Springer International Publishing, Cham, 2020) pp. 217-245.
- Valentin Kasper, Torsten V. Zache, Fred Jendrzejew- ski, Maciej Lewenstein, and Erez Zohar, "Non-abelian gauge invariance from dynamical decoupling," (2021), arXiv:2012.08620 [quant-ph].
- Henry Lamm, Scott Lawrence, and Yukari Yamauchi, "Suppressing coherent gauge drift in quantum simula- tions," (2020), arXiv:2005.12688 [quant-ph].
- Jad C. Halimeh, Haifeng Lang, Julius Mildenberger, Zhang Jiang, and Philipp Hauke, "Gauge-symmetry protection using single-body terms," PRX Quantum 2, 040311 (2021).
- Jad C. Halimeh, Lukas Homeier, Christian Schweizer, Monika Aidelsburger, Philipp Hauke, and Fabian
- Grusdt, "Stabilizing lattice gauge theories through sim- plified local pseudogenerators," Phys. Rev. Research 4, 033120 (2022).
- Jad C. Halimeh, Haifeng Lang, and Philipp Hauke, "Gauge protection in non-abelian lattice gauge theories," New Journal of Physics (2022).
- Jad C. Halimeh and Philipp Hauke, "Stabilizing gauge theories in quantum simulators: A brief review," (2022), 10.48550/ARXIV.2204.13709.
- Jad C. Halimeh and Philipp Hauke, "Diffusive-to- ballistic crossover of symmetry violation in open many-body systems," (2020), arXiv:2010.00009 [cond- mat.quant-gas].
- H. D. Zeh, "On the interpretation of measurement in quantum theory," Foundations of Physics 1, 69-76 (1970).
- Maximilian Schlosshauer, "Decoherence, the measure- ment problem, and interpretations of quantum mechan- ics," Rev. Mod. Phys. 76, 1267-1305 (2005).
- F. Yoshihara, K. Harrabi, A. O. Niskanen, Y. Nakamura, and J. S. Tsai, "Decoherence of flux qubits due to 1/f flux noise," Phys. Rev. Lett. 97, 167001 (2006).
- K. Kakuyanagi, T. Meno, S. Saito, H. Nakano, K. Semba, H. Takayanagi, F. Deppe, and A. Shnirman, "Dephasing of a superconducting flux qubit," Phys. Rev. Lett. 98, 047004 (2007).
- Radoslaw C. Bialczak, R. McDermott, M. Ansmann, M. Hofheinz, N. Katz, Erik Lucero, Matthew Neeley, A. D. O'Connell, H. Wang, A. N. Cleland, and John M. Martinis, "1/f flux noise in josephson phase qubits," Phys. Rev. Lett. 99, 187006 (2007).
- Jonas Bylander, Simon Gustavsson, Fei Yan, Fumiki Yoshihara, Khalil Harrabi, George Fitch, David G. Cory, Yasunobu Nakamura, Jaw-Shen Tsai, and William D.
- Oliver, "Noise spectroscopy through dynamical decou- pling with a superconducting flux qubit," Nature Physics 7, 565-570 (2011).
- Hui Wang, Chuntai Shi, Jun Hu, Sungho Han, Clare C. Yu, and R. Q. Wu, "Candidate source of flux noise in squids: Adsorbed oxygen molecules," Phys. Rev. Lett. 115, 077002 (2015).
- P. Kumar, S. Sendelbach, M. A. Beck, J. W. Freeland, Zhe Wang, Hui Wang, Clare C. Yu, R. Q. Wu, D. P. Pap- pas, and R. McDermott, "Origin and reduction of 1/f magnetic flux noise in superconducting devices," Phys. Rev. Applied 6, 041001 (2016).
- Dmitry Abanin, Wojciech De Roeck, Wen Wei Ho, and François Huveneers, "A rigorous theory of many- body prethermalization for periodically driven and closed quantum systems," Communications in Mathematical Physics 354, 809-827 (2017).
- Maarten Van Damme, Haifeng Lang, Philipp Hauke, and Jad C. Halimeh, "Reliability of lattice gauge theories in the thermodynamic limit," (2021), arXiv:2104.07040 [cond-mat.quant-gas].
- P. Facchi and S. Pascazio, "Quantum zeno subspaces," Phys. Rev. Lett. 89, 080401 (2002).
- P. Facchi, D. A. Lidar, and S. Pascazio, "Unification of dynamical decoupling and the quantum zeno effect," Phys. Rev. A 69, 032314 (2004).
- Paolo Facchi, Giuseppe Marmo, and Saverio Pascazio, "Quantum zeno dynamics and quantum zeno subspaces," 196, 012017 (2009).
- Daniel Burgarth, Paolo Facchi, Hiromichi Nakazato, Saverio Pascazio, and Kazuya Yuasa, "Generalized Adi- abatic Theorem and Strong-Coupling Limits," Quantum 3, 152 (2019).
- Jad C. Halimeh, Lukas Homeier, Hongzheng Zhao, Annabelle Bohrdt, Fabian Grusdt, Philipp Hauke, and Johannes Knolle, "Enhancing disorder-free localization through dynamically emergent local symmetries," PRX Quantum 3, 020345 (2022).
- Jutho Haegeman, J. Ignacio Cirac, Tobias J. Osborne, Iztok Pižorn, Henri Verschelde, and Frank Verstraete, "Time-dependent variational principle for quantum lat- tices," Phys. Rev. Lett. 107, 070601 (2011).
- Jutho Haegeman, Tobias J. Osborne, and Frank Ver- straete, "Post-matrix product state methods: To tangent space and beyond," Phys. Rev. B 88, 075133 (2013).
- Jutho Haegeman, Christian Lubich, Ivan Oseledets, Bart Vandereycken, and Frank Verstraete, "Unifying time evolution and optimization with matrix product states," Phys. Rev. B 94, 165116 (2016).
- Maarten Van Damme, Julius Mildenberger, Fabian Grusdt, Philipp Hauke, and Jad C. Halimeh, "Sup- pressing nonperturbative gauge errors in the thermo- dynamic limit using local pseudogenerators," (2021), arXiv:2110.08041 [quant-ph].
- W. H. Press, "Flicker noises in astronomy and else- where." Comments on Astrophysics 7, 103-119 (1978).
- S. Kogan and S. Kogan, Electronic Noise and Fluctua- tions in Solids (Cambridge University Press, 1996).
- C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-photon interactions: basic processes and applica- tions, Wiley-Interscience publication (J. Wiley, 1992).
- H.P. Breuer, F. Petruccione, and S.P.A.P.F. Petruccione, The Theory of Open Quantum Systems (Oxford Univer- sity Press, 2002).
- M. H. S. Amin, C. J. S. Truncik, and D. V. Averin, "Role of single-qubit decoherence time in adiabatic quantum computation," Phys. Rev. A 80, 022303 (2009).
- J.R. Johansson, P.D. Nation, and Franco Nori, "Qutip: An open-source python framework for the dynamics of open quantum systems," Computer Physics Communi- cations 183, 1760 -1772 (2012).
- J.R. Johansson, P.D. Nation, and Franco Nori, "Qutip 2: A python framework for the dynamics of open quantum systems," Computer Physics Communications 184, 1234 -1240 (2013).
- S Chandrasekharan and U.-J Wiese, "Quantum link models: A discrete approach to gauge theories," Nuclear Physics B 492, 455 -471 (1997).
- U.-J. Wiese, "Ultracold quantum gases and lattice sys- tems: quantum simulation of lattice gauge theories," An- nalen der Physik 525, 777-796 (2013).
- V Kasper, F Hebenstreit, F Jendrzejewski, M K Oberthaler, and J Berges, "Implementing quantum elec- trodynamics with ultracold atomic systems," New Jour- nal of Physics 19, 023030 (2017).
- Luca Barbiero, Christian Schweizer, Monika Aidels- burger, Eugene Demler, Nathan Goldman, and Fabian Grusdt, "Coupling ultracold matter to dynamical gauge fields in optical lattices: From flux attachment to Z2 lattice gauge theories," Science Advances 5 (2019), 10.1126/sciadv.aav7444.
- Erez Zohar, Alessandro Farace, Benni Reznik, and J. Ig- nacio Cirac, "Digital quantum simulation of z2 lattice gauge theories with dynamical fermionic matter," Phys. Rev. Lett. 118, 070501 (2017).
- Umberto Borla, Ruben Verresen, Fabian Grusdt, and Sergej Moroz, "Confined phases of one-dimensional spin- less fermions coupled to Z2 gauge theory," Phys. Rev. Lett. 124, 120503 (2020).
- Zhi-Cheng Yang, Fangli Liu, Alexey V. Gorshkov, and Thomas Iadecola, "Hilbert-space fragmentation from strict confinement," Phys. Rev. Lett. 124, 207602 (2020).
- Matja ž Kebrič, Luca Barbiero, Christian Reinmoser, Ul- rich Schollwöck, and Fabian Grusdt, "Confinement and mott transitions of dynamical charges in one-dimensional lattice gauge theories," Phys. Rev. Lett. 127, 167203 (2021).
- Umberto Borla, Ruben Verresen, Jeet Shah, and Sergej Moroz, "Gauging the kitaev chain," (2021), arXiv:2010.00607 [cond-mat.str-el].
- Haifeng Lang, Philipp Hauke, Johannes Knolle, Fabian Grusdt, and Jad C. Halimeh, "Disorder-free local- ization with Stark gauge protection," arXiv e-prints , arXiv:2203.01338 (2022), arXiv:2203.01338 [cond- mat.quant-gas].
- Tameem Albash, Sergio Boixo, Daniel A Lidar, and Paolo Zanardi, "Quantum adiabatic markovian master equations," New Journal of Physics 14, 123016 (2012).
- E.B. Davies, "Markovian master equations. ii." Mathe- matische Annalen 219, 147-158 (1976).
- E. B. Davies, "Markovian master equations," Communi- cations in Mathematical Physics 39, 91-110 (1974).
- Daniel A. Lidar, "Lecture notes on the theory of open quantum systems," (2019).
- Stephen P. Jordan, Edward Farhi, and Peter W. Shor, "Error-correcting codes for adiabatic quantum computa- tion," Phys. Rev. A 74, 052322 (2006).