Academia.eduAcademia.edu

Outline

Scalable quantum field simulations of conditioned systems

2009, Physical Review A

https://doi.org/10.1103/PHYSREVA.80.013606

Abstract

We demonstrate a technique for performing stochastic simulations of conditional master equations. The method is scalable for many quantum field problems and therefore allows first-principles simulations of multimode bosonic fields undergoing continuous measurement, such as those controlled by measurement-based feedback. As examples, we demonstrate a 53-fold speed increase for the simulation of the feedback cooling of a single trapped particle, and the feedback cooling of a quantum field with 32 modes, which would be impractical using previous brute force methods.

References (33)

  1. M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information (Cambridge University Press, 2000).
  2. G. J. Milburn, Schrödinger Machines (W. H. Freeman, 1997).
  3. V. P. Belavkin, in Information Complexity and Control in Quantum Systems, edited by A. Blaquiere, S. Diner, and G. Lochack (1987), pp. 311-329.
  4. H. M. Wiseman and G. J. Milburn, Phys. Rev. Lett. 70, 548 (1993).
  5. H. M. Wiseman, Phys. Rev. A 49, 2133 (1994).
  6. A. C. Doherty and K. Jacobs, Phys. Rev. A 60, 2700 (1999).
  7. R. van Handel, S. J. K., and H. Mabuchi, J. Opt. B: Quantum Semiclass. Opt. 7, S179 (2005).
  8. N. V. Morrow, S. K. Dutta, and G. Raithel, Phys. Rev. Lett. 88, 093003 (2002).
  9. M. A. Armen, J. K. Au, J. K. Stockton, A. C. Doherty, and H. Mabuchi, Phys. Rev. Lett. 89, 133602 (2002).
  10. J. Geremia, J. K. Stockton, A. C. Doherty, and H. Mabuchi, Phys. Rev. Lett. 91, 250801 (2003).
  11. J. E. Reiner, W. P. Smith, L. A. Orozco, H. M. Wiseman, and J. Gambetta, Phys. Rev. A 70, 023819 (2004).
  12. P. Bushev, D. Rotter, A. Wilson, F. Dubin, C. Becher, J. Eschner, R. Blatt, V. Steixner, P. Rabl, and P. Zoller, Phys. Rev. Lett. 96, 043003 (2006).
  13. D. Felinto, C. W. Chou, J. Laurat, E. W. Schomburg, H. De Riedmatten, and H. J. Kimble, Nature Physics 2, 844 (2006).
  14. C. Gardiner, Handbook of Stochastic Methods (Springer- Verlag, 1983).
  15. C. Gardiner, Quantum Noise (Springer-Verlag, 1991).
  16. H. M. Wiseman and L. K. Thomsen, Phys. Rev. Lett. 86, 1143 (2001).
  17. P.D.Drummond and S.J.Carter, J. Opt. Soc. Am. B 4, 1565 (1997).
  18. J. J. Hope, Phys. Rev. A 64, 053608 (2001).
  19. J. Corney and P. Drummond, Phys. Rev. B 73, 125112 (2006).
  20. L. Bouten, R. van Handel, and M. James, SIAM J. Con- trol Optim. 46, 2199 (2007).
  21. H. Carmichael, An open systems approach to quantum optics, Lecture Notes in Physics m 18 (Springer-Verlag, Berlin, 1993).
  22. J. Gambetta and H. M. Wiseman, J. Opt. B: Quantum Semiclass. Opt. 7, S250 (2005).
  23. T. P. McGarty, Stochastic systems and state estimation (Wiley, New York, 1974).
  24. P. Deuar and P. D. Drummond, Phys. Rev. A 66, 6902 (2002).
  25. A. Barchielli and V. P. Belavkin, J. Phys. A: Math. Gen. 24, 1495 (1991).
  26. N. Gisin, Phys. Rev. Lett. 52, 1657 (1984).
  27. L. Disi, Physics Letters A 129, 419 (1988), ISSN 0375-9601, URL http://www.sciencedirect. com/science/article/B6TVM-46MDDKN-1J7/2/ 6eb51e0b57b3d36dd6099f84c736496b.
  28. L. Disi, Physics Letters A 114, 451 (1986), ISSN 0375-9601, URL http://www.sciencedirect. com/science/article/B6TVM-46VPYW4-2W/2/ 6af1d4b1b9a9df802aee32035bef8f3a.
  29. H. M. Wiseman and G. J. Milburn, Phys. Rev. A 47, 642 (1993).
  30. S. D. Wilson, A. R. R. Carvalho, J. J. Hope, and M. R. James, Physical Review A 76, 013610 (2007).
  31. N. Trivedi and D. M. Ceperley, Phys. Rev. B 41, 4552 (1990).
  32. M. J. Steel, M. K. Olsen, L. I. Plimak, P. D. Drummond, S. M. Tan, M. J. Collett, D. F. Walls, and R. Graham, Phys. Rev. A 58, 4824 (1998).
  33. Project website http://www.xmds.org.