General Stochastic Calculus and Applications
https://doi.org/10.31390/GRADSCHOOL_DISSERTATIONS.5805Abstract
5.2 A t-dependence plot of the various constructed processes. Solid line represents the constructed process. Dotted line represents the final value of one differential equation within the time step being used as initial condition for the next one. .
References (32)
- Wided Ayed and Hui-Hsiung Kuo. An extension of the itô integral. Communications on Stochastic Analysis, 2(3):5, 2008.
- Louis Bachelier. Theory of speculation: The origins of modern finance. Francia: Gauthier-Villars, 1900.
- Robert Brown. A brief account of microscopical observations made in the months of june, july and august 1827, on the particles contained in the pollen of plants, and on the general existence of active molecules in organic and inorganic bodies. Edin. Phil. J, 5(358):3, 1828.
- Harald Cramér. On a new limit theorem of the theory of probability. Uspekhi Matem- aticheskikh Nauk, pages 166-178, 1944.
- Amir Dembo and Ofer Zeitouni. Large Deviations Techniques and Applications. Stochastic Modelling and Applied Probability. Springer Berlin Heidelberg, 2009.
- Albert Einstein. Über die von der molekularkinetischen theorie der wärme geforderte bewegung von in ruhenden flüssigkeiten suspendierten teilchen. Annalen der physik, 4, 1905.
- Leonard Gross. Abstract wiener spaces. Technical report, Cornell University, Ithaca, United States, 1967.
- Takeyuki Hida. Analysis of brownian functionals, carleton mathematical lecture notes 13. Princeton University book, 1975.
- Chii Ruey Hwang, Hui-Hsiung Kuo, and Kimiaki Saitô. Anticipating exponential pro- cesses and stochastic differential equations. Communications on Stochastic Analysis, 13(3):9, 2019.
- Chii-Ruey Hwang, Hui-Hsiung Kuo, Kimiaki Saitô, and Jiayu Zhai. A general itô formula for adapted and instantly independent stochastic processes. Communications on Stochastic Analysis, 10(3):5, 2016.
- Chii Ruey Hwang, Hui-Hsiung Kuo, Kimiaki Saitô, and Jiayu Zhai. Near-martingale property of anticipating stochastic integration. Communications on Stochastic Analy- sis, 11(4):6, 2017.
- Kiyosi Ito. Differential equations determining Markov processes. Zenkoku Shijo Sug- aku Dan-wakai, 244(1077):1352-1400, 1942.
- Kiyosi Itô. Extension of stochastic integrals. Proceedings of the International Sympo- sium on Stochastic Differential Equations, Kyoto, 1976. Wiley, 1978.
- Narjess Khalifa, Hui-Hsiung Kuo, Habib Ouerdiane, and Benedykt Szozda. Linear stochastic differential equations with anticipating initial conditions. Communications on Stochastic Analysis, 7(2):5, 2013.
- Hui-Hsiung Kuo. Introduction to Stochastic Integration. Universitext. Springer New York, 2006.
- Hui-Hsiung Kuo. The itô calculus and white noise theory: A brief survey toward gen- eral stochastic integration. Communications on Stochastic Analysis, 8(1):8, 2014.
- Hui-Hsiung Kuo. White noise distribution theory. CRC press, 2018.
- Hui-Hsiung Kuo, Anuwat Sae-Tang, and Benedykt Szozda. An isometry formula for a new stochastic integral. In Quantum Probability and Related Topics, pages 222-232. World Scientific, 2013.
- Hui-Hsiung Kuo, Pujan Shrestha, and Sudip Sinha. Anticipating linear stochastic differential equations with adapted coefficients. Journal of Stochastic Analysis, 2(2), 2021.
- Hui-Hsiung Kuo, Pujan Shrestha, and Sudip Sinha. An intrinsic proof of an extension of itô's isometry for anticipating stochastic integrals. Journal of Stochastic Analysis, 2(4), 2021.
- Hui-Hsiung Kuo, Pujan Shrestha, Sudip Sinha, and Padmanabhan Sundar. On near- martingales and a class of anticipating linear SDEs. arXiv preprint arXiv:2204.01932, 2022.
- Hui-Hsiung Kuo, Sudip Sinha, and Jiayu Zhai. Stochastic differential equations with anticipating initial conditions. Communications on Stochastic Analysis, 12(4):6, 2018.
- Paul Malliavin. Stochastic calculus of variations and hypoelliptic operators. In Proc. Internat. Symposium on Stochastic Differential Equations, Kyoto Univ., Kyoto, 1976. Wiley, 1978.
- Paul Malliavin. Stochastic Analysis. Grundlehren der mathematischen Wis- senschaften. Springer Berlin Heidelberg, 2015.
- David Nualart. The Malliavin Calculus and Related Topics. Probability and Its Ap- plications. Springer Berlin Heidelberg, 2006.
- David Nualart. Malliavin calculus and normal approximations. Ensaios Matemáticos, 34:1-74, 2019.
- Peter Parczewski. Extensions of the hitsuda-skorokhod integral. arXiv preprint arXiv:1711.06091, 2017.
- Anatolii Volodimirovich Skorokhod. On a generalization of stochastic integral. Teoriya Veroyatnostei I Ee Primeneniya, 20(2):223-238, 1975.
- Hale F Trotter. On the product of semi-groups of operators. Proceedings of the Amer- ican Mathematical Society, 10(4):545-551, 1959.
- Norbert Wiener. Differential-space. Journal of Mathematics and Physics, 2(1-4):131- 174, 1923.
- David Williams. Probability with Martingales. Cambridge mathematical textbooks. Cambridge University Press, 1991.
- Jiayu Zhai. General Stochastic Integral and Itô Formula with Application to Stochas- tic Differential Equations and Mathematical Finance. PhD thesis, LSU Doctoral Dis- sertations, 2018.