Academia.eduAcademia.edu

Outline

Abstract Intelligence

2017, International Journal of Cognitive Informatics and Natural Intelligence

https://doi.org/10.4018/IJCINI.2017010101

Abstract

Basic studies in denotational mathematics and mathematical engineering have led to the theory of abstract intelligence (aI), which is a set of mathematical models of natural and computational intelligence in cognitive informatics (CI) and cognitive computing (CC). intelligence triggers the recent breakthroughs in cognitive systems such as cognitive computers, cognitive robots, cognitive neural networks, and cognitive learning. This paper reports a set of position statements presented in the plenary panel (Part II) of IEEE ICCI*CC'16 on Cognitive Informatics and Cognitive Computing at Stanford University. The summary is contributed by invited panelists who are part of the world's renowned scholars in the transdisciplinary field of CI and CC.

References (104)

  1. Anderson, J. R. (1983). The Architecture of Cognition. Cambridge, MA: Harvard Univ. Press.
  2. Baciu, G., Li, C., Wang, Y., & Zhang, X. (2016). Cloudet: A Cloud-Driven Visual Cognition of Large Streaming Data. International Journal of Cognitive Informatics and Natural Intelligence, 10(1), 12-31. doi:10.4018/ IJCINI.2016010102
  3. Baciu, G., C. Li, Y. Wang, and X. Zhang, (2015). Cloudets: Cloud-based cognition for large streaming data. Proceedings of the IEEE 14 th international conference on cognitive informatics and cognitive computing (pp. 333-338).
  4. Batallones, A., Sanchez, K., Mott, B., Coffran, C., & Frank Hsu, D. (2015). On the combination of two visual cognition systems using combinational fusion. Brain Inform, 2(1), 2132. doi:10.1007/s40708-015-0008-0 PMID:27747501
  5. Bender, E. A. (1996). Mathematical Methods in Artificial Intelligence. Los Alamitos, CA: IEEE CS Press.
  6. Carter, R., Aldridge, S., Page, M., & Parker, S. (2009). Mapping the Mind. Berkeley, USA: Univ. of California Press.
  7. Chang, C. C., & Lin, C.-J. LIBSVM: a library for support vector machines. Retrieved from http://www.csie. ntu.edu.tw/~cjlin/libsvm/
  8. Dayan, P., & Abbott, L. E. (2001). Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. MA: The MIT Press.
  9. Gotesky, R. (1968). The uses of inconsistencies. Philosophy and Phenomenological Research, 28(4), 471-500. doi:10.2307/2105687
  10. Graham, D., & Rockmore, D. (2011). The packet switching brain. Journal of Cognitive Neuroscience, 23(2), 267-276. doi:10.1162/jocn.2010.21477 PMID:20350173
  11. Harada, T., Iwasaki, H., Mori, K., Yoshizawa, A., & Mizoguchi, F. (2014). Evaluation Model of Cognitive Distraction State Based on Eye Tracking Data Using Neural Networks. International Journal of Software Science and Computational Intelligence, 6(1), 1-16. doi:10.4018/ijssci.2014010101
  12. Harbluka, J. L., Ian Noyb, Y., & Patricia, L. (2007). Trbovicha and Moshe Eizenmanc: An on-road assessment of cognitive distraction: Impacts on drivers visual behavior and braking performance. Accident; Analysis and Prevention, 39(2), 372-379. doi:10.1016/j.aap.2006.08.013 PMID:17054894
  13. Holmqvist, K. et al.. (2011). Eye Tracking. Oxford Univ. Press.
  14. Hsu, D. F., Chung, Y. S., & Kristal, B. S. (2006). Combinatorial fusion analysis: methods and practice of combining multiple scoring systems. In H. H. Hsu (Ed.), Advanced data mining technologies in bioinformatics (pp. 1157-1181). Calgary: Idea Group Inc. doi:10.4018/978-1-59140-863-5.ch003
  15. Hsu, D. F., Kristal, B. S., & Schweikert, C. (2010). Rank-score characteristics (RSC) function and cognitive diversity. Brain Inform, 8211, 42-54. doi:10.1007/978-3-642-15314-3_5
  16. Hsu, D. F., & Taksa, I. (2005). Comparing rank and score combination methods for data fusion in information retrieval. Information Retrieval, 8(3), 449-480. doi:10.1007/s10791-005-6994-4 ICIC. (2012), The International Institute of Cognitive Informatics and Cognitive Computing (ICIC). Retrieved from http://www.ucalgary.ca/icic/
  17. Liang, Y., & Michelle, L. (2007). Reyes, and John D. Lee: Real-time detection of Driver Cognitive Distraction Using Support Vector Machines: IEEE Transactions On Intelligent Transportation Systems, 8(2).
  18. Liversedge, S. P., Gilchrist, I., & Everling, S. (2011). The Oxford Handbook of Eye Movement. Oxford Univ. Press.
  19. Lyons, D. M., & Hsu, D. F. (2009). Combining multiple scoring systems for target tracking using rank-score characteristics. Information Fusion, 10(2), 124-136. doi:10.1016/j.inffus.2008.08.009
  20. Mack, A., & Rock, I. (1998). Inattentional Blindness. MIT Press.
  21. Marieb, E. N. (1992), Human Anatomy and Physiology (2nd ed.). Redwood City, CA, USA: The Benjamin/ Cummings Publishing Co., Inc.
  22. Mitchell, T. The discipline of machine learning, Technical report No. CMU-ML-06-108, Carnegie Mellon University, 2006.
  23. Mizoguchi, F., Ohwada, H., Nishiyama, H., & Iwasaki, H. (2013). Identifying Driver's Cognitive Load Using Inductive Logic Programming, Inductive Logic Programming. In Inductive Logic Programming, LNAI (Vol. 7842, pp. 166-177).
  24. Mizoguchi, F., Ohwada, H., Nishiyama, H., Yoshizawa, A., & Iwasaki, H. (2015). Identifying Driver's Cognitive Distraction Using Inductive Logic Programming. Proceedings of the 25th International Conference on Inductive Logic Programming (ILP '15).
  25. Mizoguchi, F., Nishhiyama, H., & Iwasaki, H. (2014). A New Approach to Detecting Distracted Car Drivers Using Eyemovement Data. Proceedings of the 13th IEEE International Conference on Cognitive Informatics & Cognitive Computing ICCI*CC '14 (pp. 266-272).
  26. Mueller, E. T. (2014). Commonsense Reasoning. Morgan Kaufmann. NHTSA. (2010), TSA Distracted Driving Research Plan. Retrieved from http://www.nhtsa.gov/Research/ Human+Factors/Distract
  27. Poole, D., Mackworth, A., & Goebel, R. (1997). Computational Intelligence: A Logical Approach. Oxford, UK: Oxford University Press.
  28. Reisberg, D. (2001). Cognition: Exploring the Science of the Mind. Norton & Company, Inc.
  29. Russell, P. The global brain awakens: Our next evolutionary leap: Element, 2000.
  30. Salvucci, D. D. (2002). Modeling driver distraction from cognitive tasks. Proceedings of the 24th AnnualConference of the Cognitive Science Society.
  31. Sega, S. (2011). Iwasaki, H., Hiraishi, H., & Mizoguchi, F. International Journal of Software Science and Computational Intelligence, 3(4), 18-32. doi:10.4018/jssci.2011100102
  32. Sega, S., Iwasaki, H., Hiraishi, H., & Mizoguchi, F. (2011). Applying qualitative reasoning to a driver's cognitive mental load. Proceedings of the 10th IEEE International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC '11).
  33. Sporns, O., Tononi, G., & Kötter, R. (2005). The human connectome: A structural description of the human brain. PLoS Computational Biology, 1(4), e42. doi:10.1371/journal.pcbi.0010042 PMID:16201007
  34. Sternberg, R. J. (1998). In Search of the Human Mind (2nd ed.). Orlando, FL: Harcourt Brace & Co.
  35. Tudoran, R., Costan, A., & Antoniu, G. (2016). OverFlow: Multi-Site Aware Big Data Management for Scientific Workflows on Clouds. IEEE Transactions on Cloud Computing, 4(1), 76-89. doi:10.1109/TCC.2015.2440254
  36. Vapnik, V. (1995). The Nature of Statistical Learning Theory. Springer-Verlag. doi:10.1007/978-1-4757-2440-0
  37. Wang, Y. (2002), Keynote: On Cognitive Informatics. Proc. 1st IEEE International Conference on Cognitive Informatics (ICCI'02), Calgary, Canada (pp. 34-42). doi:10.1109/COGINF.2002.1039280
  38. Wang, Y. (2003), On Cognitive Informatics. Brain and Mind: A Transdisciplinary Journal of Neuroscience and Neurophilosophy, 4(2), 151-167.
  39. Wang, Y. (2006, July). Keynote: Cognitive Informatics -Towards the Future Generation Computers that Think and Feel, Proc. 5th IEEE International Conference on Cognitive Informatics(ICCI'06), Beijing, China (pp. 3-7). IEEE CS Press. doi:10.1109/COGINF.2006.365666
  40. Wang, Y. (2007a). The Theoretical Framework of Cognitive Informatics. International Journal of Cognitive Informatics and Natural Intelligence, 1(1), 1-27. doi:10.4018/jcini.2007010101
  41. Wang, Y. (2007b, July). Software Engineering Foundations: A Software Science Perspective (Vol. 2). NY, USA: Auerbach Publications.
  42. Wang, Y. (2007c). The OAR Model of Neural Informatics for Internal Knowledge Representation in the Brain. International Journal of Cognitive Informatics and Natural Intelligence, 1(3), 64-75. doi:10.4018/ jcini.2007070105
  43. Wang, Y. (2008, June). On Contemporary Denotational Mathematics for Computational Intelligence. Transactions of Computational Science, 2. Springer.
  44. Wang, Y. (2009a). On Abstract Intelligence: Toward a Unified Theory of Natural, Artificial, Machinable, and Computational Intelligence. International Journal of Software Science and Computational Intelligence, 1(1), 1-18. doi:10.4018/jssci.2009010101
  45. Wang, Y. (2009b). On Cognitive Computing. International Journal of Software Science and Computational Intelligence, 1(3), 1-15. doi:10.4018/jssci.2009070101
  46. Wang, Y. (2009c). Paradigms of Denotational Mathematics for Cognitive Informatics and Cognitive Computing. Fundamenta Informaticae, 90(3), 282-303.
  47. Wang, Y. (2010a). Cognitive Robots: A Reference Model towards Intelligent Authentication. IEEE Robotics and Automation, 17(4), 54-62. doi:10.1109/MRA.2010.938842
  48. Wang, Y. (2010b). On Formal and Cognitive Semantics for Semantic Computing. International Journal of Semantic Computing, 4(2), 203-237. doi:10.1142/S1793351X10000833
  49. Wang, Y. (2011a). Inference Algebra (IA): A Denotational Mathematics for Cognitive Computing and Machine Reasoning (I). International Journal of Cognitive Informatics and Natural Intelligence, 5(4), 62-83. doi:10.4018/ jcini.2011100105
  50. Wang, Y. (2011b). Towards the Synergy of Cognitive Informatics, Neural Informatics, Brain Informatics, and Cognitive Computing. International Journal of Cognitive Informatics and Natural Intelligence, 5(1), 75-93. doi:10.4018/jcini.2011010105
  51. Wang, Y. (2012a). In Search of Denotational Mathematics: Novel Mathematical Means for Contemporary Intelligence, Brain, and Knowledge Sciences. Journal of Advanced Mathematics and Applications, 1(1), 1-31. doi:10.1166/jama.2012.1001
  52. Wang, Y. (2012b). On the Denotational Mathematics Foundations for the Next Generation of Computers: Cognitive Computers for Knowledge Processing. Journal of Advanced Mathematics and Applications, 1(1), 101-112. doi:10.1166/jama.2012.1009
  53. Wang, Y. (2012c). On Abstract Intelligence and Brain Informatics: Mapping Cognitive Functions of the Brain onto its Neural Structures. International Journal of Cognitive Informatics and Natural Intelligence, 6(4), 54-80. doi:10.4018/jcini.2012100103
  54. Wang, Y. (2012d). Contemporary Mathematics as a Metamethodology of Science, Engineering, Society, and Humanity. Journal of Advanced Mathematics and Applications, 1(1), 1-3. doi:10.1166/jama.2012.1001
  55. Wang, Y. (2012e, June 18-21). Keynote: Towards the Next Generation of Cognitive Computers: Knowledge vs. Data Computers. Proceedings of the12th International Conference on Computational Science and Applications(ICCSA'12), Salvador, Brazil. Springer.
  56. Wang, Y. (2013a). Neuroinformatics Models of Human Memory: Mapping the Cognitive Functions of Memory onto Neurophysiological Structures of the Brain. International Journal of Cognitive Informatics and Natural Intelligence, 7(1), 98-122. doi:10.4018/jcini.2013010105
  57. Wang, Y. (2013b). On Semantic Algebra: A Denotational Mathematics for Cognitive Linguistics, Machine Learning, and Cognitive Computing. Journal of Advanced Mathematics and Applications, 2(2), 145-161. doi:10.1166/jama.2013.1039
  58. Wang, Y. (2014a). On a Novel Cognitive Knowledge Base (CKB) for Cognitive Robots and Machine Learning. International Journal of Software Science and Computational Intelligence, 6(2), 42-64.
  59. Wang, Y. (2014b). Software Science: On General Mathematical Models and Formal Properties of Software. Journal of Advanced Mathematics and Applications, 3(2), 130-147. doi:10.1166/jama.2014.1060
  60. Wang, Y. (2015a). Keynote: Cognitive Robotics and Mathematical Engineering. Proceedings of the 15th IEEE Int'l Conf. on Cognitive Informatics & Cognitive Computing (ICCI*CC '15), Tsinghua Univ. IEEE CS Press.
  61. Wang, Y. (2015b). Cognitive Learning Methodologies for Brain-Inspired Cognitive Robotics. International Journal of Cognitive Informatics and Natural Intelligence, 9(2), 37-54. doi:10.4018/IJCINI.2015040103
  62. Wang, Y. (2015c). Fuzzy Probability Algebra (FPA): A Theory of Fuzzy Probability for Fuzzy Inference and Computational Intelligence. Journal of Advanced Mathematics and Applications, 4(1), 38-55. doi:10.1016/j. jmaa.2014.06.082
  63. Wang, Y. (2015d). On Mathematical Theories and Cognitive Foundations of Information. International Journal of Cognitive Informatics and Natural Intelligence, 9(3), 41-63. doi:10.4018/IJCINI.2015070103
  64. Wang, Y. (2015e). Concept Algebra: A Denotational Mathematics for Formal Knowledge Representation and Cognitive Robot Learning. Journal of Advanced Mathematics & Applications, 4(1), 1-26. doi:10.1166/ jama.2015.1066
  65. Wang, Y. (2016a), Keynote: Deep Reasoning and Thinking beyond Deep Learning by Cognitive Robots and Brain-Inspired Systems. Proceedings of the 15th IEEE International Conference on Cognitive Informatics and Cognitive Computing (ICCI*CC '16), Stanford University, Stanford, CA, USA. IEEE CS Press Wang, Y. (2016b). On Cognitive Foundations and Mathematical Theories of Knowledge Science. International Journal of Cognitive Informatics and Natural Intelligence, 10(2), 1-24. doi:10.4018/IJCINI.2016040101
  66. Wang, Y. (2016c, November 28-30). Keynote: Brain-Inspired Deep Machine Learning and Cognitive Learning Systems. Proceedings of the8th International Conference on Brain Inspired Cognitive Systems (BICS'16), Beijing.
  67. Wang, Y. (2016d). (in press). Big Data Algebra: A Denotational Mathematics for Big Data Science and Engineering. Journal of Advanced Mathematics and Applications, 5(1).
  68. Wang, Y., & Berwick, R. C. (2012). Towards a Formal Framework of Cognitive Linguistics. Journal of Advanced Mathematics and Applications, 1(2), 250-263. doi:10.1166/jama.2012.1019
  69. Wang, Y., & Berwick, R. C. (2013). Formal Relational Rules of English Syntax for Cognitive Linguistics, Machine Learning, and Cognitive Computing. Journal of Advanced Mathematics and Applications, 2(2), 182-195. doi:10.1166/jama.2013.1042
  70. Wang, Y., Berwick, R. C., Haykin, S., Pedrycz, W., Kinsner, W., Baciu, G., & Bhavsar, C. et al. (2011, October- December). Cognitive Informatics and Cognitive Computing in Year 10 and Beyond. International Journal of Cognitive Informatics and Natural Intelligence, 5(4), 1-21. doi:10.4018/jcini.2011100101
  71. Wang, Y., & Fariello, G. (2012). On Neuroinformatics: Mathematical Models of Neuroscience and Neurocomputing. Journal of Advanced Mathematics and Applications, 1(2), 206-217. doi:10.1166/jama.2012.1015
  72. Wang, Y., Howard, N., Plataniotis, K., Widrow, B., & Zadeh, L. A. (Eds.). (2016a, August). Proceedings of the 15th IEEE International Conference on Cognitive Informatics and Cognitive Computing (ICCI*CC'16), Stanford, CA., IEEE Computer Society Press, Los Alamitos, CA. .
  73. Y. Wang, R. H. Johnston, & M. R. Smith (Eds.). (2002). Proceedings of the 1st IEEE International Conference on Cognitive Informatics (ICCI'02), IEEE Computer Society Press, Calgary, Canada, July.
  74. Wang, Y., & Kinsner, W. (2006). Recent Advances in Cognitive Informatics. IEEE Transactions on Systems, Man and Cybernetics. Part C, Applications and Reviews, 36(2), 121-123. doi:10.1109/TSMCC.2006.871120
  75. Wang, Y., Kinsner, W., Anderson, J. A., Sheu, P., Tsai, J., Pedrycz, W., & Zadeh, L. A. et al. (2009a). A Doctrine of Cognitive Informatics. Fundamenta Informaticae, 90(3), 203-228.
  76. Wang, Y., Kinsner, W., & Zhang, D. (2009b). Contemporary Cybernetics and its Faces of Cognitive Informatics and Computational Intelligence(Part B). IEEE Transactions on Systems, Man, and Cybernetics, 39(4), 1-11.
  77. Wang, Y., Tian, Y., & Hu, K. (2011). Semantic Manipulations and Formal Ontology for Machine Learning Based on Concept Algebra. International Journal of Cognitive Informatics and Natural Intelligence, 5(3), 1-29. doi:10.4018/IJCINI.2011070101
  78. Wang, Y., Valipour, M., & Zatarain, O. A. (2016b). Quantitative Semantic Analysis and Comprehension by Cognitive Machine Learning. International Journal of Cognitive Informatics and Natural Intelligence, 10(3), 13-28. doi:10.4018/IJCINI.2016070102
  79. Wang, Y., Wang, Y., Patel, S., & Patel, D. (2006). A Layered Reference Model of the Brain (LRMB)[Part C].
  80. IEEE Transactions on Systems, Man, and Cybernetics, 36(2), 124-133. doi:10.1109/TSMCC.2006.871126 PMID:16602600
  81. Wang, Y., Wang, Y., Widrow, B., Zadeh, L. A., Howard, N., Wood, S., & Shell, D. F. et al. (2016c). Cognitive Intelligence: Deep Learning, Thinking, and Reasoning with Brain-Inspired Systems. International Journal of Cognitive Informatics and Natural Intelligence, 10(4), 1-20. doi:10.4018/IJCINI.2016100101
  82. Wang, Y., Zhang, D., & Kinsner, W. (Eds.). (2010), Advances in Cognitive Informatics and Cognitive Computing, Springer, SCI 323. doi:10.1007/978-3-642-16083-7
  83. Wang, Y., Zhang, D., Latombe, J.-C., & Kinsner, W. (Eds.). (2008, August). Proceedings of the 7th IEEE International Conference on Cognitive Informatics (ICCI'08), Stanford University, IEEE Computer Society Press, Los Alamitos, CA.
  84. Widrow, B. (2016), Keynote: Hebbian Learning and the LMS Algorithm. Proceedings of the IEEE 15th International Conference on Cognitive Informatics and Cognitive Computing (ICCI*CC'16), Stanford University, CA, USA. IEEE Press.
  85. Widrow, B., Kim, Y., & Park, D. (2015). The Hebbian-LMS Learning Algorithm. IEEE Computational Intelligence Magazine, 10(11), 37-53. doi:10.1109/MCI.2015.2471216
  86. Wilson, R. A., & Keil, F. C. (2001). The MIT Encyclopedia of the Cognitive Sciences. MIT Press.
  87. Woolsey, T. A., Hanaway, J., & Gado, M. H. (2008). The Brain Atlas: A Visual Guide to the Human Central Nervous System (3rd ed.). NY: Wiley.
  88. Yang, J. M., Chen, Y.-F., Shen, T.-W., Kristal, B. S., & Hsu, D. F. (2005). Consensus scoring for improving enrichment in virtual screening. Journal of Chemical Information and Modeling, 45(4), 1134-1146. doi:10.1021/ ci050034w PMID:16045308
  89. Yoshida, Y., Ohwada, H., & Mizoguchi, F. (2014). Temporal Discretization Method and Naïve Bayes Classifier for Classifying Car Driver`s Cognitive Load. Proceedings of the29th International Conference on Computer and Their Application (pp. 9-14).
  90. Zadeh, L. A. (1999). From Computing with Numbers to Computing with Words -From Manipulation of Measurements to Manipulation of Perception. IEEE Transactions on Circuits and Systems, 45(1), 105-119. doi:10.1109/81.739259
  91. Zadeh, L. A. (2016), Keynote: A Key Issue of Semantics of Information. Proceedings of the IEEE 15th International Conference on Cognitive Informatics and Cognitive Computing (ICCI*CC'16), Stanford University, CA, USA. IEEE Press.
  92. Zhang, D. (2009). On temporal properties of knowledge base inconsistency. In Transactions on Computational Science V, LNCS (Vol. 5540, pp. 20-37). Springer.
  93. Zhang, D. (2010, August). Inconsistency: The good, the bad, and the ugly. International Transactions on Systems Science and Applications, 6(2/3), 131-145.
  94. Zhang, D. (2011). In T. Özyer et al. (Eds.), The utility of inconsistencies in information security and digital forensics, Recent Trends in Information Reuse and Integration (pp. 381-397). Springer-Verlag.
  95. Zhang, D. (2012, July).i2Learning: perpetual learning through bias shifting, Proc. of 24th International Conference on Software Engineering and Knowledge Engineering, San Francisco, CA, USA (pp. 249-255).
  96. Zhang, D. (2013, July).Inconsistencies in big data.Proc. of the 12th IEEE International Conference on Cognitive Informatics, New York City, NY (pp. 61-67).
  97. Zhang, D. (2013, July).Learning through overcoming incompatible and anti-subsumption inconsistencies. Proc. of the 12th IEEE International Conference on Cognitive Informatics, New York City, NY (pp. 137-142). doi:10.1109/ICCI-CC.2013.6622236
  98. Zhang, D. (2013, November).Perpetual learning through overcoming inconsistencies.Proc. of the 25th IEEE International Conference on Tools with AI, Washington DC (pp. 872-879).
  99. Zhang, D. (2014, August).Learning through explaining observed inconsistencies.Proc. of the 13th IEEE International Conference on Cognitive Informatics, London, UK (pp. 137-142).
  100. Zhang, D. (2015). Learning through overcoming temporal inconsistencies.Proc. of the 14th IEEE International Conference on Cognitive Informatics, Beijing, China (pp. 141-148).
  101. Zhang, D., & Gregoire, E. (2011). The landscape of inconsistency: A perspective. International Journal of Semantic Computing, 5(3), 235-256. doi:10.1142/S1793351X11001237
  102. Zhang, D., & Lu, M. (2012, August). Learning through overcoming inheritance inconsistencies.Proc. of 13th IEEE International Conference on Information Reuse and Integration, Las Vegas, NV, USA (pp. 201-206).
  103. Zhang, D., & Orgun, M. A. (2012, August). BRINK: initial theory on bounded rationality and inconsistent knowledge.Proc. of the Eleventh IEEE International Conference on Cognitive Informatics, Kyoto, Japan (pp. 18-26). doi:10.1109/ICCI-CC.2012.6311180
  104. Yingxu Wang is professor of cognitive informatics, brain science, software science, & denotational mathematics, President of Int'l Inst. of Cognitive Informatics & Computing (ICIC). He is a Fellow of ICIC & WIF, & a Sen. Member of IEEE & ACM. He was visiting professor at Oxford Univ., Stanford Univ., UC Berkeley, & MIT. He received a PhD from the Nottingham Trent Univ. in 1998 & has been a full professor since 1994. He is the founding steering commit. chair of IEEE Int'l Confs. on ICCI*CC since 2002. He is founding EICs of Int. Journals of Cognitive Informatics & Natural Intelligence, Software Science & Computational Intelligence, Advanced Mathematics & Applications, and Asso. Editor of IEEE Trans. on SMC-Systems. He is initiator of a few cutting-edge research fields such as cognitive informatics, denotational mathematics, abstract intelligence (αI), mathematical models of the brain, and cognitive computing. He has published 400+ peer reviewed papers, 29 books, and presented 28 invited keynote speeches. He has served as general/program chairs for more than 20 int'l conferences. He is the most popular scholar of top publications at Univ. of Calgary according to RG worldwide stats.