Academia.eduAcademia.edu

Outline

Deduction in Non-Fregean Propositional Logic SCI

2019, Axioms

https://doi.org/10.3390/AXIOMS8040115

Abstract

We study deduction systems for the weakest, extensional and two-valued non-Fregean propositional logic SCI . The language of SCI is obtained by expanding the language of classical propositional logic with a new binary connective ≡ that expresses the identity of two statements; that is, it connects two statements and forms a new one, which is true whenever the semantic correlates of the arguments are the same. On the formal side, SCI is an extension of classical propositional logic with axioms characterizing the identity connective, postulating that identity must be an equivalence and obey an extensionality principle. First, we present and discuss two types of systems for SCI known from the literature, namely sequent calculus and a dual tableau-like system. Then, we present a new dual tableau system for SCI and prove its soundness and completeness. Finally, we discuss and compare the systems presented in the paper.

References (19)

  1. Suszko, R. Non-Fregean logic and theories. Analele Univ. Bucur. Acta Log. 1968, 11, 105-125.
  2. Suszko, R. Abolition of the Fregean axiom. In Logic Colloquium: Symposium on Logic Held at Boston, 1972-73;
  3. Parikh, R., Ed.; Lecture Notes in Mathematics; Springer: Heidelberg, Germany, 1975; Volume 453, pp. 169-239.
  4. Bloom, S.; Suszko, R. Investigation into the sentential calculus with identity. Notre Dame J. Form. Log. 1972, 13, 289-308. [CrossRef]
  5. Goli ńska-Pilarek, J.; Huuskonen, T. Number of extensions of non-Fregean logics. J. Philos. Log. 2005, 34, 193-206. [CrossRef]
  6. Goli ńska-Pilarek, J.; Huuskonen, T. Logic of descriptions. A new approach to the foundations of mathematics and science. Stud. Log. Gramm. Rhetor. 2012, 40, 63-94.
  7. Goli ńska-Pilarek, J.; Huuskonen, T. Grzegorczyk's non-Fregean logics and their formal properties. In Applications of Formal Philosophy; Urbaniak, R., Payette, G., Eds.; Logic, Argumentation and Reasoning; Springer International Publishing: New York, NY, USA, 2017; Volume 14, pp. 243-263.
  8. Goli ńska-Pilarek, J.; Huuskonen, T. A mystery of Grzegorczyk's logic of descriptions. In The Lvov-Warsaw School. Past and Present; Garrido, A., Wybraniec-Skardowska, U., Eds.; Studies in Universal Logic; Springer Nature: Stuttgart, Germany, 2018; pp. 731-745.
  9. Goli ńska-Pilarek, J.; Huuskonen, T. Non-Fregean propositional logic with quantifiers. Notre Dame J. Form. Log. 2016, 57, 249-279. [CrossRef]
  10. Suszko, R. Identity connective and modality. Stud. Log. 1971, 27, 7-39. [CrossRef]
  11. Malinowski, G. Identity, many-valuedness and referentiality. Log. Log. Philos. 2013, 22, 375-387. [CrossRef]
  12. Goli ńska-Pilarek, J. On the minimal non-Fregean Grzegorczyk's logic. Stud. Log. 2016, 104, 209-234. [CrossRef]
  13. Michaels, A. A uniform proof proceduree for SCI tautologies. Stud. Log. 1974, 33, 299-310. [CrossRef]
  14. Wasilewska, A. A sequence formalization for SCI. Stud. Log. 1976, 35, 213-217. [CrossRef]
  15. Chlebowski, S. Sequent calculi for SCI. Stud. Log. 2018, 106, 541-563. [CrossRef]
  16. Goli ńska-Pilarek, J. Rasiowa-Sikorski proof system for the non-Fregean sentential logic SCI.
  17. J. Appl.-Non-Class. Log. 2007, 17, 511-519. [CrossRef]
  18. Orłowska, E.; Goli ńska-Pilarek, J. Dual Tableaux: Foundations, Methodology, Case Studies; Trends in Logic; Springer: Dordrecht Heidelberg London New York, NY, USA, 2011; Volume 33.
  19. Rasiowa, H.; Sikorski, R. On Gentzen theorem. Fundam. Math. 1960, 48, 57-69. [CrossRef]